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PREFACE 

This  volume  contains  the  technical  proceedings  of  the  First 
International  Interactive  Workshop on Inversion  Methods  in 
Atmospheric  Remote  Sounding,  held  in  Williamsburg,  Virginia, 
December 15-17, 1976. Seventy-three  invited  scientists  from  seven 
countries,  representing  universities,  research  laboratories,  and 
U.S. Government  agencies,  participated  in  the  Workshop.  The  pur- 
pose  of  the  Workshop  was  to  provide  an  interdisciplinary  forum to 
review  and  assess  the  state  of  the  art  in  Inversion  Methods  avail- 
able  for  retrieving  information  about  the  atmosphere  from  remotely 
sensed  data. 

Twenty-one  invited  papers  covered  the  mathematical  theory  of 
Inversion  Methods  as  well  as  the  application  of  these  methods to 
the  remote  sounding  of  atmospheric  temperature,  relative  humidity, 
and  gaseous  and  aerosol  constituents.  The  emphasis  was on the 
assumptions,  methodology,  resolution,  stability,  accuracy,  and 
future  efforts  needed  in  the  various  Inversion  Methods.  Also 
included  are  invited  papers on  the  Direct  Radiative  Transfer 
Methods  and  results  relevant  to  the  Inversion  Problem.  The  latter 
were  presented  in  a  special  session on Radiative  Transfer  Methods, 
held  jointly  with  the  Optical  Sociefy  of  America  Topical  Meeting 
on  Atmospheric  Aerosols,  which  preceded  the  Workshop.  One  of  the 
major  Workshop  objectives  was  to  enable  researchers  in  different 
areas'  of  atmospheric  remote  sounding  to  compare  and  optimize  the 
utilization  of  these  inversion  procedures  in  their  respective 
remote  sounding  techniques.  Ample  time  was  allowed  for  dis- 
cussions  following  each  paper  and  in  two  open  discussion  sessions. 
This  fulfilled  an  important  objective  of  the  Interactive  Workshop. 
Discussions  presented  were  recorded  and  the  transcripts  post- 
edited.  Each  discussant  edited  his/her  portion  of  the  statements 
with  the  aim  of  improving  its  clarity  without  changing  its  sub- 
stance. 

Since  NASA  is  involved  in  developing  several  remote  sensing 
experiments  designed  to  monitor  the  atmospheric  constituents  and 
properties  from  aboard  space  platforms,  the  undersigned  suggested 
to  M.  P.  McCormick,  Langley  Research  Center,  that  organization of 
an  Interactive  Workshop  dealing  with  the  mathematical  aspects  of 
Inversion  Methods  will  greatly  benefit  all  researchers  concerned 
with  inversion  and  radiative  transfer  methods.  He,  along  with 
J.  D. Lawrence,  Jr.,  Langley  Research  Center,  and  M.  Tepper,  NASA 
Headquarters,  concurred  and  supported  the  idea  with  the  result 
that  the  undersigned  undertook  the  assignment  of  organizing  such 
a  workshop  with  the  goal  of  making  the  proceedings  of  the  Workshop 
readily  available  to  the  scientific  community. 

To  ensure  proper  representation of major  disciplines  involved, 
a  Workshop  Program  Committee,  composed  of  A.  Deepak  (Chairman), 
Old  Dominion  University;  M.  P.  McCormick  (Associate  Chairman), 
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NASA  Langley  Research  Center; B.  M. Herman,  University  of  Arizona; 
J. D. Lawrence,  Jr.,  NASA  Langley  Research  Center;  and M. Tepper, 
NASA  Headquarters,  was  set  up.  The  Committee  was  ably  assisted  in 
this  endeavor  by  the  following  Program  Consultants: M. T. Chahine, 
Jet  Propulsion  Laboratory;  B.  J.  Conrath,  NASA  Goddard  Space 
Flight  Center;  A.  L.  Fymat,  Jet  Propulsion  Laboratory; 
J.  Russell, 111, NASA  Langley  Research  Center;  and  E.  Westwater, 
NOAA/Environmental  Research  Laboratory. 

Dr.  Tepper  opened  the  Workshop  stressing  the  significance of 
inversion  problems  to  NASA  and  its  programs  involved  in  the 
monitoring  of  atmospheric  environments  of  the  Earth  and  other 
planets.  The  challenges  inherent  in  the  inversion  problem  were 
perhaps  best  characterized  by  his  analogy  that  the  problem 
of the  Inversion  Method  was  like  that  of  unscrambling  an  egg, 
wherein  one  investigates  the  scrambled  egg  to  determine  what  it 
was  like  originally. 

The  undersigned  wishes  to  acknowledge  the  enthusiastic 
support  and  cooperation  given  him  by  the  participants,  the  mem- 
bers  of  the  organizing  committee,  the  program  consultants,  the 
session  chairmen,  and  the  speakers  in  making  the  Workshop a very 
stimulating  and  valuable  experience  for  everyone.  Special  thanks 
are  due  M.  P.  McCormick  whose  wholehearted  cooperation  and  active 
support  as  Associate  Chairman  assured  the  success  of  the  Workshop. 
Commendations  are  due  the  Science  and  Technical  Information  Program 
Division  and  especially  the  Technical  Editing  Branch,  for  their 
cooperation  and  high  quality  of  workmanship  in  publishing  this 
Proceedings.  Last  but  not  least,  it  is a pleasure to thank  and 
highly  commend  the  superb  job  done  by  Mrs.  M.  "Sue"  Crotts  both 
in  helping  with  the  organization  of  the  Workshop  and  with  the 
excellent  quality  of  typing  of  the  manuscript. 

Behind  every  successful  remote  sensing  technique  is  at  least 
one  reliable  Inversion  Method. I hope  these  Proceedings  will  be 
a lasting  contribution  to  the  field  of  Inversion  Methods. 

Adarsh  Deepak 
Editor 
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HYBRID  METHODS ARE HELPFUL 

H.  C. van  de  Hulst 
Lei den U n i  versi t y 

A b a s i c a l l y   s i m p l e   p r o b l e m  l i ke  m u l t i p l e   s c a t t e r i n g  i n  
a p l a n e   l a y e r  o f ten  p e r m i t s  the convenient u s e  o f  d i f f e r e n t  
m e t h o d s   j o i n e d   t o g e t h e r .   S a m p l e   n u m e r i c a l   r e s u l t s  t o  i l l u s -  
t r a t e  this p o i n t  refer t o  X -  a n d   Y - f u n c t i o n s ,   a s y m p t o t i c  
f i t t i n g ,  the s m a l l - l o s s   a p p r o x i m a t i o n s ,   p o l a r i z a t i o n  i n  
h i g h  orders, a n d   p h o t o n   p a t h   d i s t r i b u t i o n .  

I. INTRODUCTION 

Methods  to  solve  problems  in  radiative  transfer  and  in  multiple 

scattering  exist  in  such  a  wide  variety  that I shall  not  attempt 

another  review.  In  any  practical  problem,  the  method  must  be 

chosen  on  the  basis  of  expediency,  and  this,  in  turn,  depends  on 

many  factors,  such  as:  range  of  variables;  desired  accuracy  of 

results;  occasional  or  frequent  computations  needed;  cost,  avail- 

able  funds;  and  experience  and  taste. I emphasize  in  this  paper 

the  fact  that  in  many  situations  a  hybrid  approach  containing  ele- 

ments  from  different  methods,  though  not  "elegant",  is  the  most 

practical. A normal  rose  or  fruit  tree  consists  of  different 

varieties  skillfully  grown'together  because  the  desired  properties 

of  roots  and  fruits  (or  flowers)  are  not  met  in  a  single  variety. 

Before  illustratingthis  point  with  a  number  of  examples  taken 

from  Ref. 1, I wish  to  make  a  general  remark. We  all  have  learned 

to  respect  the  power  of  mathematics.  Solving  a  problem  in  mathemat- 

ical  physics  often  is  like  going  somewhere  by  train.  The  mathematics 

is  like  the  train:  we  enter at a  station  called  equation  and  we  get 
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Fig. 1. A schematic  diagram  illustrating  the  advisability 

of  accessing  from  physical  concepts to intermediate  results,  whose 

interpretation may be as  important  as  that of final numbers. 

o f f   a t  a s t a t ion   ca l l ed   so lu t ion  (see Fig. 1). Once in s ide   t he  

t r a i n ,  w e  can  re lax and  look  out  of  the window, for   no th ing  much 

can  go wrong. In   con t r a s t ,   t he   roads  from  our home t o  t h e   s t a t i o n  

and  from t h e  l a s t  s t a t i o n   t o   o u r   d e s t i n a t i o n  may be  time-consuming, 

uncomfortable,  or  even  hazardous. My poin t  is  t h a t   i n  many problems 

t h e   t r a i n  is  suburban: it s tops  a t  cer ta in   in te rmedia te   s ta t ions .  

Boarding  the  t ra in  a t  one  of  those stops may be quite as sa fe ,  

respectable,and economic as en ter ing  a t  t h e   i n i t i a l   s t a t i o n  which 

in   ou r   t op ic  i s  cal led  equat ion  of   t ransfer .  A t  any rate, it i s  

worth a t r y  to f ind   ou t  which i s  simplest.  Likewise, it o f t en  

pays   to   eva lua te   and   phys ica l ly   in te rpre t   cer ta in   in te rmedia te  

r e s u l t s  which is  the  same as ge t t i ng   o f f   be fo re   t he  end s t a t ion .  

The phi losophical  message is  t h a t  combining  physics  with 

mathematics makes a hybrid method anyhow. Therefore, we might a s  

w e l l  experiment a l i t t l e  t o   f i n d   t h e  most  convenient  connection. 
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11. THE X- AND Y-FUNCTIONS 

Consider  any  given  landscape  (Fig. 2) with  an  isotropic  light 

source  placed at a  point P and  no  other  source  of  illumination. 

Looking at this  landscape  from  a  distance,  say  from  the  direction 

Q, we  see  a  blob  of  light  in  which  the  source  itself  (dimmed or not) 

may  still  be  discernible.  We  define  the g a i n  (from P to Q and  con- 

versely)  as  the  intensity  that  reaches Q from  source  plus  illumi- 

nated  landscape  divided  by  the  intensity  that  would  reach Q from 
the  bare  source  placed at the  same  distance. 

This  definition  is  given  in  preparation  of  a  discussion  of  the 

well-known X- and  Y-functions  for  isotropic  scattering.  These 

functions  were  introduced  by  Ambartsumian  in  the  early  forties  and 

extensively  studied  by  Chandrasekhar  about 1945, who  defined  them 

as  solutions  of  certain  simultaneous  nonlinear  integral  equations. 

f all arrows to Q 

Y 

f 

F i g .  2 .  A s c h e m a t i c  sketch of a " landscape"  w i t h  a n  iso- 

t r o p i c   s o u r c e   a t  P f o r  i l l u s t r a t i n g  the c o n c e p t  of g a i n  between 

p o i n t  P and a direction Q .  
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Far  simpler,  in  the  gain  definition  just  given,  we  may  take 

as  the  "landscape"  a  homogeneous  slab of isotropically  scattering 

particles  with  optical  thickness  b,  the  source P just  outside  the 

slab,  and  the  direction Q subtending an angle 8 with  the  normal. 

The  X-function  then  is  the  gain  with  the  source  seen  in  front  of 

the  slab  and  the  Y-function  is  the  gain  with  the  source  (dimmed) 

seen  through  the  slab.  This  is  all  there  is  to  it:  no  problems 

of  existence  or  uniqueness  if  we  board  the  train  at  this  station. 

Both  functions  depend  on  three  variables: b, l~ = cos 9, and  a = 

the  albedo  for  single  scattering. 

I was  quite  pleased  when  in  1947 I rediscovered  these  defi- 

nitions,  from  which  Ambartsumian  had  started,  and  found  that  cer- 

tain  properties  of  these  functions  can  be  far  more  easily  derived 

from  these  physical  definitions.  Since  that  time, I do  not  hesi- 

tate  to  use  the  two  approaches  mixed. 

Figure 3 shows  a  selection  of  values  of  these  functions.  The 

Y-function.usually  is  less  than  unity  because  the  blob  of  scat- 

tered  and  multiply-scattered  light  does  not  fully  compensate  the 

dimming  of  the  direct  source.  The  X-function  always  is  greater 

than  unity  because  it  includes  a  term  unity  arising  from  the 

unobstructed  light  from  the  source.  The  X-function  for  a  semi- 

infinite  atmosphere  (b = a) usually  is  called  the  H-function. If 

e 

b = m  and  a = 1, all  radiation  incident  on  the  atmosphere  is 

returned  as  diffusely  reflected  light  after  many  scattering  events. 

If  the  landscape  were  a  mirror  reflecting  all  incident  radiation, 

we  would  see  the  source  double  from  any  direction,  which  would 

mean X ( u )  = 2. The  diffuse  reflection  leads  to  the same average 

value  of 2 for  H(p),  but  the  distribution  with p is  different, 

ranging  from  H(0) = 1.0 to  H(1) = 2.908. 

As a  counter  example,  in  which  the  physical  picture  is  of 

little  use, I mention  the  extension  of  the  H-function  to  arguments 

outside  the  domain p = 0 to  1.  Such  an  extension  is  needed  in  a 

variety  of  problems.  It  is  then  convenient  to  plot  the  inverse 
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F i g .  3 .  Reminder of the dependence  o f  the X -  a n d   Y - f u n c t i o n s  

for  i s o t r o p i c   s c a t t e r i n g  on the v a r i a b l e s  b ,  a ,  and IJ. T h e  X -  

f u n c t i o n  f o r  b = 00 i s  c a l l e d   H - f u n c t i o n .  

function {H ( p )  1 - l  against  the  inverse  argument IJ . Figure 4 gives 

an  example  which  happens  to  refer  to  anisotropic  scattering  but 

this  makes  no  essential  difference.  We  see  that  the  graph  con- 

tinues  to  curve  down  for p < 1 and  reaches 0 at p-'= -k, where 

k is  the  diffusion  exponent,  i.e.,  the  value  for  which a self- 

consistent  solution  to  the  transfer  equation  in  an  unbounded  medium 

exists  in  which  the  dependence  on  optical  depth T is  given by the 

factor  exp(+  k.r) . The  values  and  slopes at IJ = 0 and = -k 

occur  in  several  standard  problems. 

-1 
.I 

-1 

/ 

-1 - 1  

We  have  taken  these  illustrations  from  isotropic  scattering 

and  one  example  from  very  simple  anisotropic  scattering.  Phase 

functions  of  arbitrary  form,  or  phase  matrices  with  polarization, 

require a more  elaborate  set  of  formulas.  Yet,  the  situation 

remains  basically  the  same:  carefully  preparing  the  access at 

intermediate  stations  usually  pays off in  clarity  or  in  speed of 

computation. 

A final  remark on the X- and  Y-functions  for  single-scattering 

patterns  of  arbitrary  form is that  these  same  functions  appear  In 
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N = l  wo =a, =0.9 
” - I , I . . \  k=0.4401 

- 0.5 +O .O +0.5 +1.0 +1.5  S=1/p + 2.0 
- k  + k  

F i g .  4. A p l o t  of l / H ( p )  a s  a f u n c t i o n  of 1/u d e p i c t i n g  the 

best way for v i s u a l i z i n g  the b e h a v i o r  o f  the H- func t ion   beyond the 

usual   domain 0 I p I 1 f o r  l i n e a r l y   a n i s o t r o p i c   s c a t t e r i n g  w i t h  

w = w = 0.9. 
0 1 

conceptually  quite  different  methods.  The  sketch  in  Fig. 5, which 

we  shall  not  explain  in  detail,  shows  four  important  methods  of 

solving  radiation  transfer  problems. In the  second  method, 

labeled  “invariant  embedding,“  the X- and  Y-functions  are  intro- 

duced  to  describe  the  effect  of  a  narrow  layer  added  to  one or the 

other  side  of  a  slab.  The  method  of  singular  eigenfunction  expan- 

sion  works  from  an  entirely  different  concept,  in  which  the  com- 

plete  set  of  eigenfunctions  for  the  unbounded  medium  is  first 

established.  The  proper  coefficients  of  each  that  match  the 

boundary  conditions  are  then  found  by  applying  orthogonality 

relations  and it is  in  the  course of establishing  the  half-range 

orthogonality  relations  that  the X- and  Y-functions  have  to  be 

introduced. 
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F i g .  5.  S c h e m a t i c   r e p r e s e n t a t i o n  o f  some  commonly  used 

methods t o  solve problems  of m u l t i p l e   s c a t t e r i n g  or r a d i a t i v e  

t r a n s f e r .  

111. ASYMPTOTIC  FITTING 

Before  describing  this  method, I wish  to  convey  by  means  of 

Fig. 6 an  impression  of  the  range  of  variables  in  which  the  sim- 

plest  approximations  suffice.  I  refer  to  the  legend  for  details. 

The  diagram  shows  that,  if  the  scattering  is  conservative, or 

nearly so, a  wide  range  of  four  decades  in  the  optical  thickness  b 

exists,  in  which  we  cannot  in  practice  say:  the  layer  is  very  thin, 

or  it  is  infinitely  thick.  This  is  annoying  because  the  conver- 

gence  of  almost  any  method  is  small  for  large b. This  point  is 

illustrated  for  the  successive  scattering  method  in  Fig. 7. 

The  incidence  is  normal in  this  example  and  the  scattering  is 

isotropic, so that  the  source  function  for  first-order  scattering 

J, is 1/4 e-' in  both  examples.  In  the  righk-hand  side  example,  the 

layer  thickness is 1. At  each  successive  scattering  there  are 

losses at both sides  and  the  net  effect is that  after  some  five 

scattering  events,the  distribution  has  become  symmetric and drops 
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F i g .  6 .  R e p r e s e n t a t i o n  o f  the r a n g e  o f  the v a r i a b l e s  b and 

a i n  which  the s i m p l e s t   a p p r o x i m a t i o n s   s u f f i c e .  The very s i m p l e s t  

a p p r o x i m a t i o n s   a r e   v a l i d  w i t h  a n   a c c u r a c y  better t h a n  1% i n  the 

shaded   a reas  i n  this diagram: l e f t  s i n g l e   s c a t t e r i n g ,   r i g h t  the 

e q u a t i o n s  for  a s e m i - i n f i n i t e   a t m o s p h e r e .  The next a p p r o x i m a t i o n s ,  

s h o w n   b y   h a t c h e d   a r e a s ,   a r e  l e f t  s i n g l e   p l u s   d o u b l e   s c a t t e r i n g   a n d  

r i g h t  the t h i c k - l a y e r   a s y m p t o t i c   f o r m u l a e ,   a g a i n  t o  a 1% a c c u r a c y .  

T h e  c o r r e s p o n d i n g  5% l i m i t s   a r e  shown b y  d o t t e d   c u r v e s .   S c a l e s   a r e  

l i n e a r  i n  l o g  b and ' J 1 - a  and the q u a n t i t y   t r e a t e d  is the p l a n e  

a l b e d o  f o r  nQrmal incidence w i t h  i s o t r o p i c   s c a t t e r i n g .  

w i t h  every   fur ther   sca t te r ing  by a constant   factor  0.619. The con- 

vergence,  then, i s  as a geometr ic   se r ies   wi th   th i s   ra t io .  However, 

on the  lef t -hand  s ide example, the  thickness is  b 10. Here,  the 

convergence seems rapid  near T = 0, but i s  n o t   a t   a l l   v i s i b l e   y e t   a t  

T 2 3 .  Eventually,  the  convergence w i l l  be a s  a  geometric  series 

w i th   r a t io  0.976 ( f o r  b = lo), or 0.993 ( f o r  b = 2 0 ) ,  o r  as a 

ser ies   wi th  terms proport ional  t o  n -3'2 ( fo r  b = m) . I n  any case,  

t h i s  convergence i s  too slow t o  make the  method  of successive 

s c a t t e r i n g   a t t r a c t i v e .  
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F i g .  7 .  Demonstration of the convergence of   the  method o f  

successive  scattering b y  p lo ts   o f   the  source function  against 

optical  depth T i n  successive  orders. The example re f eys   t o  per- 

pendicular  incidence on a layer  with  isotropic  scattering.  Left:  

total  depth 1 10,  slow  convergence. R i g h t :  total  depth 1 ,  r a p i d  

convergence. 

In  this  domain,  we  have  elaborately  used  the  doubling  method. 

It  is  clear  that  by  th-  doubling  method  we  can  in  ten  steps  bridge 

the  range  of  optical  thickness  b = 1/32, 1/16, 1/8, ..., 8, 16, 3 2 ,  

but  that  it  is  silly  to  try  to  carry  this  process  to  b = 03, which 

we  can  never  reach.  Instead,  we  wish  to  use  the  known  asymptotic 

forms  of  the  reflection  and  transmission  functions  for  sufficiently 

large b. The  grafting  of  the  different  approach  (asymptotic  theory) 

onto  the  numerical  computation  (doubling)  makes  a  hybrid  compu- 

tational  method  and  we  have  called  this  method  asymptotic  fitting. 

It  uses  the  doubling  results  in  exactly  the  same  way  as  we  would 

use  measured  data  to  find  the  constants  in  an  equation  of  known 

form. 

9 



\ 

The approach t o  such  a known form, prescribed by asymptotic 

theory is  well i l l u s t r a t e d  by Fig. 8. Again the  example is simple, 

namely i so t rop ic   s ca t t e r ing ,  and the   o rd ina te  is the  source  func- 

t ion.  It  is seen   t ha t   no t   qu i t e   a t  b = 4 ,  but   cer ta in ly  a t  b = 8 

and higher   there  i s  a  range  of T i n  which the  graph i s  s t r a i g h t .  

I n  t h i s   "d i f fus ion  domain" the  source  function  goes as exp(-kT) a s  

i n  an unbounded medium.  The d i f fus ion  domain i s  the  range  of T 

f a r  enough from the  top  s ide,  where in jec t ion   takes   p lace  

10-4- 

a -0.90 

isotropic 
Po= 0.5 

0 1 2 3 4 5 6  7 8 9 10 11 12 
7: 

F i g .  8 .  The s o u r c e   f u n c t i o n  i s  p l o t t e d   a g a i n s t   o p t i c a l   d e p t h  

i n  s i x  s i t u a t i o n s   w h i c h  d i f f e r  o n l y   b y  the assumed thickness b o f  

the l a y e r   a n d  i n  which the s i n g l e   s c a t t e r i n g   a l b e d o  a = 0.90 and 

the cosine o f  the a n g l e   o f  incidence uo a r e   k e p t   c o n s t a n t .  From 

b = 8 u p  the c u r v e s   s h o w  a s t r a i g h t  m i d d l e  p o r t i o n   ( d i f f u s i o n  

domain)  and the a s y m p t o t i c   l a w s   a r e   v a l i d .  
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(T = 0 to  3),  and  from  the  bottom  side,  where  the  escape of radi- 

ation  becomes  noticeable (T = b - 2  to b).  Using  this  knowledge 
and  taking  the  results of three  successive  steps,  say  b = 8, 16 

and  32,  yields  all  desired  functions  and  constants  for  a  semi- 

infinite  medium. 

IV. THE CORNER OF SMALL LOSSES 

In  the  problem  of  reflection  and  transmission  by  a  homogeneous 

slab of scattering  particles, I like  to  display  the  results  in a 

diagram of a, the  albedo  for  single  scattering,  against b, the 

optical  thickness  of  the  slab.  Such  a  representation  is  chosen  in 

Fig. 9. This  figure  may  be  regarded as a  companion  to  Fig. 6, 

because it  shows  in  a  different  way  (roughly  delineated  by  the 

dotted  curves)  in  which  area  we  may  say  that  the  result  is  as  for 

b = and  in  which  area  we  may  say  that  the  result  is  as  for  a = 1. 

b 

I I I 1  I 

0 . 2  . L  .6 .8 .9 .95 .99 1.0 a 

F i g .  9 .  The f u l l  domain o f  a l b e d o  a a n d   l a y e r  thickness 

b i s  d i s p l a y e d  on l i n e a r   s c a l e s  o f  and (1 + b)-’ . The 

c u r v e s  show the v a l u e s  of the reflected f l u x   p o r t i o n   ( p l a n e  

a l b e d o )  f o r  normal incidence w i t h   i s o t r o p i c   s c a t t e r i n g .  
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A t  one  corner,  defined by a = 1, b = 03, t h e   r e f l e c t i o n  i s  com- 

plete.   Small  losses by escape from t h e  bottom  of  the  slab  occur  if  

b is  no t   qu i t e  03. Small  losses  by  absorption  in  the  atmosphere 

occur i f  a < 1. These lo s ses  are not   addi t ive  and t h e i r  combined 

behavior  has  posed  nasty  problems  in many papers,  numerical and 

ana ly t ica l   a l ike .   Yet ,   the   s i tua t ion  i s  simple i f  w e  r e f e r   t o  

asymptotic  theory.  Both  of  these  losses  have  the same dependence  on 

angle  of  incidence and escape  because  they  both  occur i n  deep  layers.  

They add i n  a way which i s  universa l ,   except   for   sca le   fac tors .  

This i s  shown in   F ig .  1 0  which is  an  enlarged  portion  of  the  top 

right-hand  corner  of  Fig. 9 .  The dot ted  curves ,  which  have known 

tangents   in   the  corner  domain, now indica te   the   exac t  loc i  where 

the   l o s ses  by escape  from  the  bottom ( i - e . ,  into  the  black  ground)  

and the  losses by imperfect  scattering  in  the  atmosphere  have a 

f i x e d   r a t i o .  

V.  POLARIZATION I N  HIGH-ORDER SCATTERING 

The f ine   v i sua l   observa t ions   o f   po lar iza t ion   of   the   p lane t  

Venus a t  var ious   phase   angles   publ i shed   in   Lyot ' s   thes i s  i n  1929 

have  out las ted 40 yea r s   be fo re   t he   f i r s t   t en t a t ive   i n t e rp re t a t ion  

could  be  replaced by a more def ini te   one.   Lyot   conjectured  that  

po la r i za t ion  m'ight be  completely  absent  in a l l  bu t   f i r s t -o rde r  

scat ter ing.   This   guess  w a s  not   correct .   Since 1970, the  accuracy 

of  both  the  measurements  and  the  calculations  have  been  greatly '  

improved. Most authors  now agree   tha t   the   po lar iza t ion   curves   o f  

Venus measured a t  different  wavelengths  present  convincing  evidence 

of   concent ra ted   su l fur ic   ac id  as t h e  main consti tuent  of  the  drop- 

l e t s .  

L e t  us   re turn   to   the   bas ic   p roblem:  how  much polar iza t ion   can  

be  present  i n  t h e   l i g h t   a r i s i n g  from  double  and  multiple  scattering? 

I have worked out  an  extreme  practicing example  based  on  Rayleigh 

scat ter ing.   Radiat ion is assumed t o   f a l l  on a semi- inf ini te  atmos- 

phere  under 60° from the  normal  and w e  seek t o  compute t h e   i n t e n s i t y  

12 
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F i g .  10.  
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Enlarged portion  of a corner o f  F i g .  9 .  Heavy 

curves  give  the combined loss = nonreflected  fraction  of  incident 

f l u x  and dotted  curves show the ra t io  of the two kinds of loss. 

The curves near the  loss-less corner have a universal  form  inde- 

pendent of   the  phase function. 

and  polarization  reflected  back  to  the  source  (as  for  part o€ a 

planet  in  opposition).  The  degree  of  polarization  in  this  example 

is 0% in  the  first  order, 9% in  the  second  order,  and  surprisingly 

goes  up  even  further  to 13% and 14% in  the  third  and  fourth  orders 

before  it  settles  to 2.2% in  very  high  orders. 
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If  now  we  add a factor  a  to  the  nth  order  and  take  the  sum, 

we  obtain  the  intensity  diffusely  reflected  back  in  each  polariza- 

tion  with  a = single.  scattering  albedo  (Fig. 11). The  effect  just 

mentioned  then  shows  up  as  a  maximum  polarization  of 6.1% for 

a = 0.95. The  simplest  way  to  collect  these  results  was  to  com- 

bine  data  obtained  by  very  different  methods. 

n 

VI.  PHOTON  PATH  DISTRIBUTIONS 

The  understanding  of  many  problems,  for  instance,  the  for- 

mation  of  planetary  absorption  lines,  is  greatly  aided  by  a  clear 

knowledge  of  the  photon  path  distributions. It is  well  known  that 

such  distributions  may  be  obtained  by  an  inverse  Laplace  transform 

from  the  dependence of the  reflection  function on a  (albedo  for 

single  scattering).  This  knowledge  may  be  put  to  use  in  various 

ways:  the  inverse  Laplace  transform  may  be  applied  to  any  form  in 

which  the  reflection  function  is  known--analytic,  numerical,  or 

asymptotic.  A  systematic  exploration  of  this  possibility  has  made 

it possible  to  combine  smoothly  the  results for very  low  orders, 

where ad  hoc calculations  are  fast,  with  those  of  high  orders, 

where  an  asymptotic  approach  is  more  appropriate. 

I shall  show  two  examples,  both  referring  to  finite  layers 

with  isotropic  scattering.  For  very  low  orders,  it  is  possible 

to  derive  the  explicit  form  of  the  photon  path  distribution.  This 

is  done  for  n = 1 and  n = 2 in  Fig. 12 (with  b = 1, v = v = 1) on 

the  basis  of  computations  made  by  Irvine. It  is  much  easier  to 

derive  only  the  average  path < A  > and  the  variation cr2 from  the 

average  path. A smooth  distribution  curve  with  a  convenient  form 

and  with  the  correct  average  and  variation  then is 

0 

n  n 

where  m  and k must  be  solved  from 

14 
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F i g .  11. C o n s t r u c t i o n  o f  the c u r v e  o f  p o l a r i z a t i o n   a g a i n s t  

s i n g l e   s c a t t e r i n g   a l b e d o  a f o r  ref lect ion i n t o  the p r e c i s e   b a c k -  

ward direction a g a i n s t  a semi-infinite R a y l e i g h   a t m o s p h e r e  v i ewed  

and i l l u m i n a t e d   u n d e r  60° w i t h  the normal .  
1.2 
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F i g .  12.  A v e r a g e   p h o t o n   p a t h   l e n g t h   p e r   s c a t t e r i n g  event for  

r e f l e c t i n g   a g a i n s t  or t r a n s m i s s i o n   b y  a f i n i t e  i s o t r o p i c a l l y   s c a t -  

t e r i n g   l a y e r  w i t h  o p t i c a l  thickness b. 
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and r (k) i s  t h e  gamma funct ion.  

I have  plot ted,   in   Fig.  1 2 ,  as dot ted   curves   these   d i s t r ibu-  

t i o n s   f o r  n = 2 and n = 5. The f - ac t   t ha t   t he   do t t ed   cu rve   fo r  

n = 2 comes a l ready   c lose   to   the   exac t   curve  means t h a t  a t  higher 

n f o r  most practical problems we do not  have  to  worry  about  the 

exact  curves  but  can use the  approximation  with  full   confidence.  

The l a r g e r   t h e   t o t a l  number of s ca t t e r ing   even t s ,   t he   l a rge r  

t he  combined opt ical   path.   In   an unbounded medium, we simply  have 

an  average  path  length  per   scat ter ing  event   equal   to  1. I n  order 

t o  show t h e   t r a n s i t i o n  from v e r y   t h i n   t o   v e r y   t h i c k   l a y e r s ,  I have 

the re fo re   p lo t t ed   i n   F ig .  1 3  the   average  path  length  divided by n. 

Again,  exact results f o r  n = 1 and  n = 2 have  been  combined  with 

exact   asymptot ic   resul ts   (value  and  s lope)   near  n = m. Note t h a t  

toward large  values  of  n,   the  photon  again  "forgets" from  which 

s i d e  it came so tha t   t he   cu rves   fo r   t r ansmiss ion  and r e f l e c t i o n  

converge  toward  the same value and become tangent.  For  very  thin 

l aye r s  (b 5 O . l ) ,  it i s  immaterial  from  the  start  whether w e  con- 

s ider   re f lec t ion   or   t ransmiss ion .  

16 
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F i g .  13. P a t h - l e n g t h   d i s t r i b u t i o n  o f  r a d i a t i o n   d i f f u s e l y  

reflected b a c k  i n  v e r t i c a l  direction a f t e r  n s c a t t e r i n g  events 

f r o m  a s l a b  o f  i s o t r o p i c a l l y   s c a t t e r i n g   p a r t i c l e s  o f  o p t i c a l  thick- 

ness 1 exposed  t o  v e r t i c a l   i l l u m i n a t i o n .  T h e  e x a c t   f o r m s ,   k n o w n  

for s m a l l  n ,  r a p i d l y   a p p r o a c h   a n   a s y m p t o t i c   t h e o r y .  

SYMBOLS 

a s ing le   sca t te r ing   a lbedo  

b optical   thicknes.s 

H X-function for a semi-infinite  atmosphere  (b = a )  

J source   func t ion   for   f i r s t -order   sca t te r ing  

k 1/11 

pn(h)   photon  path  dis t r ibut ion  funct ion 

R R' Rr i n t e n s i t y   f o r   t h e   p o l a r i z e d  components ( subscr ip t  J?, is f o r  

p a r a l l e l  component; and r i s  for   perpendicular  component) 
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DISCUSSIONS 

Green: I wondered  if  your  slide  that  you  did  not  talk  about  had 
something to do  with  multiple  scattering  and  path  lengths? 

van de H u l s t :  Yes, this slide' shows  the  average  path  length  per 
scattering. It  is  simplest to think  that  you  have  done  a  Monte 
Carlo  calculation  and  separate  the  paths  out by the  number  of 
scatterings.  Those  which  have  two  successive  scatterings,  you 
divide by two. And those  which  have  five  successive  scatterings 
you  divide  the  total  path  length  by  five.  Then  that  comes  at 
infinity  to  a  certain  value  which  is  not  too  difficult  to  calculate. 
These  have  been  combined  in  the  graph  with  definite  values shown 
as  dots.  When  the  thickness  is  not  very  large,  in.transmission 
and  in  reflection,  you  get  approximately  the  same  path  lengths. 
And  also,  if  you  go  to  the  very  large  n,  the  light  doesn't  know 
anymore  from  which  side it  came, so the  transmission  and  reflec- 
tion  curves  again  coincide. 
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REVIEW OF RADIATIVE  TRANSFER  METHODS  IN 

SCATTERING  ATMOSPHERES 

Jacqueline  Lenoble 
Universitg d e s  Sciences e t  T e c h n i q u e s   d e  Lille 

.The prob lem o f  r a d i a t i v e   t r a n s f e r  i n  a s c a t t e r i n g  
p l a n e - p a r a l l e l   a t m o s p h e r e  i s  d i s c u s s e d ,   c o n s i d e r i n g  the 
e x a c t   a n a l y t i c a l ,  the computat ional   and the approx imate  
methods. Some r e s u l t s  of n u m e r i c a l   c o m p a r i s o n s   a r e   g i v e n .  
F i n a l l y ,  the d i f f i c u l t i e s  o f  r e a l i s t i c   a t m o s p h e r i c  m o d e l s  
a re   emphas i zed .  

I. INTRODUCTION 

The  problem of radiative  transfer  in  scattering  atmospheres 

can  roughly  be  divided  into  two  cases: (1) when  the  plane- 

parallel  approximakion  is  acceptable  a  great  deal of methods  are 

now  available,  and  it  was  worth  trying  a  comparative  review  of 

the  methods  and  numerical  comparisons  between  them;  and (2) when 

the  atmosphere  cannot  be  assumed  to  be  plane-parallel  (twilight, 

finite  clouds),  the  problem  reaches  a  much  higher  degree  of  com- 

plexity  and  there  is no  more  a  question  of  choosing  between 

existing  methods,  but  of  seeking  the  development  of  new  methods. 

11.  EQUATION  OF  TRANSFER  (Ref. 1) 

The  general  equation  of  transfer  has  the  matrix form 

"f 
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+ +  
where  ,I(r,Q) is the  radiance  matrix at a point (r) in the  direc- 

tion (Q) . x (r;S2,Q' ) is  the  phase  matrix;  K(r) , the  total  extinc- 
tion  coefficient  (absorption + scattering);  and  oo(r),  the  single 

+ 
+ + 

- +  
+ 

scattering  albedo. E(r) is  the  source  function  due  to  thermal 

emission;  it will be  neglected  in  this  paper. 

The  radiance  I(r,Q)  is  governed  by  equation 
+ +  

+ + +  -+-+  + + +  + +  + P  (r;Q,R')  Q(r,R') + P  (r;R,R')  U(r,R') 
IQ IU 

1 
+ + - +  + +  + P  (r;R,R')  V(r,Q')}  do' IV I 

and  depends on the  three  other  Stokes'  parameters  Q,U,V. 

Neglecting  the  polarization,  the  approximate  equation 

can  be  used;  p(r,R,R')  is  the 
+ + +  

phase  function. 

Table 1 shows  an  example  of  the  error  done  in  this  approxi- 

mation; it can  be  of  the  order  of 10% for  molecules  and  very  small 

particles,  but  becomes  negligible  €or  particles  with  a  Mie  param- 

eter a larger  than 4 or 5. 

111.  HOMOGENEOUS  PLANE--PARALLEL  ATMOSPHERE 

A. Generalities 

The  simplest  case  is  an  homogeneous  atmosphere  limited  by  two 

infinite  parallel  planes  and  illuminated  on  its  upper  boundary  by 

the  solar  beam.  The  only  position  variable  is z or  better  the 

optical  depth T = I, K ( z )  dz,  where Z is  the  altitude  of  the  upper 

boundary;  the  total  optical  thickness  is T~ = K ( z )  dz.  The 

direction 8 is  characterized  by  the  zenith  angle 0 = Arccos ~ . l  and 

the  azimuth  angle 4 .  

Z 
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TABLE 1 

Error i n  Percent When Neglecting  Polarization 
i n  the Computation of I 

T = a I  T = O ~  u = p o = - l  
1 

- 
w 
0 

Rayleigh a = l  a = 2' a = 5  

0.99 5.29 5.37 1.19 0.07 
0.9 8.40 9.40 3.77 0.27 
0.8 9.17 10.86 5.91 0.46 
0.6 8.19 10.51 8.25 0.58 
0.4 5.89 8.04 7.59 0.48 
0.2 3.06 4.40 4.13 0.24 

The equat ion  of   t ransfer  i s  i n   t h i s   c a s e  

where i s  the  sun  irradiance a t  the  upper  boundary on a plane 

perpendicular t o  the  solar d i r e c t i o n  ( p  . Here, I r e f e r s   t o  

the   rad iance   o f   the   d i f fuse   f lux   exc luding   the   d i rec t   so la r  beam. 
o r  +o) 

The boundary  conditions are 

I ( O ; ! J  < 014)) = 0 ,  
a d  I ( T  ;p > o I + )  givenby  ground  reflection. 1 t 

In t eg ra t ing  Eq. (4) with Eq. (5)  w e  g e t   t h e   i n t e g r a l  form of 

the  equat ion of t r a n s f e r  
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with 

= source  function (7) 

The transmission (S)  and r e f l e c t i o n  (T)  funct ions are defined 

by 

They are usefu l  when the  main i n t e r e s t  is in   the   ou tgoing   (d i f -  

fusely  t ransmit ted or re f lec ted)   rad ia t ion .  

We have  seen that   the   equat ion  of   t ransfer   contains   the  phase 

function p (  8)  as kernel.   This  phase  function i s  e i ther   g iven  by 

a table  of  numerical  experimental  values  or by a mathematical 

expression. Between the   d i f fe ren t   poss ib le   formsr  Eq. (9) gives  

the  expansion  in  Legendre  polynomials: 

i t s  main advantage i s  to   a l low  an  expansion i n  azimuth  of  the 

radiance  (and  of a l l  the  radiat ion  parameters) :  

using Eg. (10) with 
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the  equation  of  transfer 

system  of  equations  with 

0 (2 

s 

with 

only 
- 
w 
0 
" 

4 

three  variables  can  be  split  into a 

two variables 

s = 0 ,  1 ..., L (12) 

I will  give  here  a  brief  description  of  the  methods  for  the 

plane  parallel  case;  it  follows  a  report  prepared  by  a  Working 

Group  of  the  Radiation  Commission  (Ref. 2 ) .  

B. Exact  Analytical  Methods 

By  exact  analytical  methods,  we  understand  the  methods 

leading  to  a  solution  for  the  radiance  in  terms  of  mathematical 

functions,  which  have  finally  to  be  tabulated;  therefore,  the 

accuracy  of  these  methods  may  not  be  better  than  the  accuracy  of 

more  direct  numerical  methods.  Their  main  interest  is  in  the 

understanding of the  mathematical  structure  and  of  the  general 

behavior  of  the  solutions.  Their  basic  drawback  is  the  difficulty 

to  use  these  methods  in  the  case  of  a  real  atmosphere. 

Among  these  methods  we  will  classify  the  Singular 

Eigenfunctions  (or  Case)  method,  the  Wiener-Hopf  method,and  the 

reduction  to H- or X- and  Y-  functions  which  can  be  founded  on 

the  principles  of  invariance.  This  reduction is straightforward 

only  for  very  simple  phase  functions,  such  as  isotropic  or 

Rayleigh  scattering.  In  these  cases,  many  accurate  tables  of  the 

H- and X-, Y-functions  have  been  computed  and  this  makes  the 

method  a  reference  for  testing  other  methods  in  the  simplest  cases. 
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C. Computational  Methods 

By  computational  methods, we understand  methods  specifically 

designed  for  computers,  but  they  may  include  some  analytical 

treatment  before  the  numerical  procedure,  as  is  the  case  for 

the  spherical  harmonics.  The  spherical  harmonics  solution  is 

based  on  a  discrete  spectrum  of  eigenvalues v and  can  be  seen  as 

an  approximation  to  the  exact  Case  method  which  uses  a  continuous 

spectrum.  The  discrete  ordinates  method  is  indeed  very  similar 

to  the  Spherical  Harmonics.  In  the  Monte  Carlo  method,  one  photon 

at  a  time  is  followed  on  its  path  through  the  atmosphere  and  each 

event is defined  by  a  probability  distribution.  The  Dart  method 

uses  a  discretization  in  radiation  streams  whose  arrangement  is 

based  on  a  regular  dodecahedron. 

The  successive  scattering  is  based  on  an  iteration  starting 

from  the  primary  scattering.  The  Gauss  Seidel  method  uses 

another  possible  scheme  of  iteration  with  about  th-  same  advan- 

tages  and  drawbacks.  The  matrix  operator  is  based  on  the  inter- 

action  principles:  the  reflection  and  transmission  of  the  layer 

(To 2 , T ) are  expressed  in  terms  of  those of the  two  layers (To, T 

and ( T ~ , T ~ ) .  The  adding  method  uses  the same principles  with  a 

different  algorithm  and  it  reduces  to  doubling,  which  is  much 

faster,for  an  homogeneous  atmosphere.  On  the  other  hand,  the 

invariant  imbedding  uses  the  addition  of  infinitely  thin  layers 

to  obtain  differential  equations  for  the  reflection  and  trans- 

mission  functions. 

Finally,  in  the  case  of  very  thick  layers,  asymptotic 

relations  can  be  derived;  the  scattering  function  of  a  layer  of 

optical  thickness T is  expressed  in  terms  of  the  same  function 

for  a  semi-infinite  layer;  the  correcting  term  contains  the  solu- 

tion  of  the  Milne  problem  for  the  same  atmosphere  and  decreases 

as  e , where v is  the  inverse  of  the  higher  eigenvalues  which 

appears  in  the  Case  and  in  the  Spherical  Harmonics  methods; 

relations  exist  for  the  transmitted  and  the  internal  radiance. 

1 

-2v-r1 
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Table 2 shows  an  example  of  numerical  comparisons'  between 

the  Spherical  Harmonics,  the  Matrix  Operator,and  the  Successive 

Scattering  methods. . It  gives  the  intensity  at  some  depths T and 

for  some  directions P ,  for  the  case  of a haze  layer  with 

= 1, Wo = 0.9 and  normal  incidence (Po = - 1). The  relative 

difference A between  Spherical  Harmonics  and  Matrix  Operator 

TABLE 2 

Intensi ty  Haze L 

T = 1, 1 
- 
w = 0.9, 
0 

Spherical Matrix  Successive 
Harmonics  Operator Scattering T 1-1 

0 1 2.794-2  2.789-2  1.8  2.831-2  12.9 
0.6  3.913-2  3.911-2 0.5  3.935-2  5.6 

0.5 1 1.374-2  1.371-2 2.2 1.390-2  11.6 
+ 0.6  2.210-2  2.208-2  0.9  2.218-2 3.6 
- 0.6  1.153-1 1.153-1 0.0 1.157-1  3.5 
- 1  2.240 0 2.244 0 1.8 . 2.239 0 0.4 

1 0.6 2.007-1 2.007-1 0.0 2.019-1 6.0 
- 1  2.967 0 2.972 0 1.7 2.975 0 2.7 

A %  A %  

Authors  Devaux  Plass  Quenzel 
Kattawar 

'All the  numerical  results  presented  in  this  paper  have  been 

computed  in  the  framework  of a comparison  program  sponsored  by  the 

Radiation  Commission  and  the  author is greatly  indebted  to  all 

contributors. 
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values  is  always  smaller  than  two-tenths  of  a  percent.  In  the 

Successive  Scattering  method,  the  accuracy  can  be  increased  by 

increasing  the  number  of  iterations  and  the  computation  whose 

results  are  given  here  has  been  stopped  in  order  to  achieve  an 

accuracy  of  about 1%; it  is  even  better  than  that. 

The  computation  time  is  shorter  with  the  Spherical  Harmonics 

method  than  with  the  Matrix  Operator  method,  except  maybe  when  a 

very  large  number  of  solar  directions  are  wanted  at  the  same  time. 

For  the  Successive  Scattering  method,  the  computation  time is 

quite  competitive  in  this  case,  but  it  increases  very  fast  when 

w tends  to 1 and  when  the  optical  thickness  increases. 
- 
0 

Table 3 shows  the  accuracy  obtained  by  Monte  Carlo  and  Dart 

methods  for  the  same  case  of T = 0.2 and  for  various  values  of 1-1. 
The  values  plotted  are  the  relative  differences A with  the  "exact" 

values  obtained  by  both  the  Spherical  Harmonics  and  the  Matrix 

Operator  methods.  The  Monte  Carlo  program  has  been  run  by  two 

groups  of  authors;  in  both  cases,  the  accuracy  is  about  a  few 

percent,  sometimes  better  than  1%.  For  the  Dart  method  the  error 

is  a  little  larger,  but  remains  always  smaller  than 10%. The 

time  is  much  larger  for  both  these  methods  than  for  the  semi- 

analytical  methods;  but  their  main  interest  is  in  their  ability 

in  handling  non-plane-parallel  cases  as  we  will  see  later. 

Table 4 shows  again  a  comparison  of  the  intensity  computed 

by  various  methods,  now  in  the  case  of  a  thick  conservative  cloud 

( T ~  = 64; w0 = 1; po = - 1). Many  methods  are  unable to treat 

such  a  large  optical  thickness  without  a  prohibitive  computation 

time. 

In  the  Spherical  Harmonics  method,  the  computation  time  is 

nearly  independent of the  optical  thickness.  But  the  difficulty 

here  is  related  to  the  forward  peak;  Dr.  Devaux  has  approximated 

the  phase  function  of  the  cloud  by  the sum of  a  Delta-function 

and  an  expansion  with 36 Legendre  polynomials.  Therefore,  the 

result  is  wrong  in  the  forward  direction (p = - 1) for  small 
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TABLE 3 

Error A in Percent Haze L 

T = 1, w = 0.9, - - -  1, T = 0.2 1 0 

u Monte  Carlo  Monte  Carlo 
- ~~ ~~~~ .. ~ 

1 
0.8 
0.6 
0.4 
0.2 

0 
- 0.2 
- 0.4 
- 0.6 
- 0.8 
- 1  

+ 0.4 
+ 1.2 
+ 1.8 
+ 3.8 
+ 6.2 
- 7.3 
+ 0.6 
- 1.8 
- 0.5 
+ 0.6 
- 0.7 

Dart 

- 4.0 
- 3.1 
- 1.5 
- 0.7 
- 0.5 

+ 3.0 
+ 4.7 
+ 2.9 
+ 6.5 
+ 3.4 

+ 9.4 
+ 17 

' +  11 
- 4.0 
- 12 
- 5.2 
- 4.5 
+ 1.9 
+ 2.0 
+ 5.6 
- 4.3 

Authors  PLASS - KATTAWAR  MIKHAILOV 
KUZNETSOV 

WHITNEY 

optical  depths;  it  might  easily  be  checked  that  the  values  found 

at p = -1 for T = 6.4 are  smaller  than  the  values  expected  for 

primary  scattering  only.  Elsewhere,  it  is  expected  that  the 

truncature  procedure  gives  an  accuracy  better  than 1%. 

The  Monte  Carlo  method  has  no  problem  with  the  forward  peak 

and  the  results  at p = -1 and  small  optical  thickness  are  better 

than  those  of  the  Spherical  Harmonics.  But  the  computation  time 

becomes  very  large  for  such  large  optical  thickness  and  only  one 

group of  authors  has  run  the  Monte  Carlo  program  for  the  cloud 

case.  Except  for p = - 1, the  results  cam  be  compared  with  those 
of  the  Spherical  Harmonics;  the  accuracy  seems  of  the  same  order  as' 

that  for  Haze. 

Finally,  the  Asymptotic  method  finds,  in  the  case  of  large 

optical  thickness,  its own field  of  application.  Of  course, it 
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TABLE 4 

In  t ensi t y 

Cloud C1, T~ = 64, w = I, = - I  
0 

." . .  . 

Spherical 
T !J Harmonics  Asymptotic  Monte  Carlo 

32 

. . .. - .  - - - - 
0 1 1.042 0 1.03 0 1-65 b 

0.6  8.254-1 8.21-1 7.88-1 
0.2  5.584-1 5.57-1 5.91-1 

6.4 1 9.622-1 9.64-1 9.50-1 
0.6 9.876-1 1.01 0 9.59-1 
0.2 1.003 0 1.06 0 1.17 0 

- 0.2 1.000 0 1.11 0 9.09-1 
- 0.6 1.004 0 1.15 0 1.03 0 
- 1  1.840 0 1.20 0 1.15+1 

1 5.237-1 5.21-1 5.59-1 
0.6  5.697-1 5.68-1 4.49-1 
0.2  6.158-1 6.15-1 5.95-1 

- 0.2 6.618-1 6.63-1 6.78-1 
- 0.6 7.079-1 7.10-1 7.30-1 
- 1  7.54-1 7.57-1 7.45-1 

64 - 0.2 8.929-2 9.18-2 7.45-2 
- 0.6 1.458-1 1.50-1 1.25-1 
- 1  1.961-1 2.01-1 1.50-1 

~ . - - 

Authors DEVAUX  GERMOGENOVA MIKHAILOV 
KONOVALQV KUZNETSOV 

.~ "" ~ . ~ 

does  not  apply  at  small  optical  depth  for  downward  radiation. 

But  elsewhere,  its  agreement  with  the  Spherical  Harmonics  is 

better  than 5%. 

D. Approximate  Methods 

By  approximate  methods,  we  understand  methods  which  include 

a  very  rough  approximation of the  atmDspheric  properties  or  (and) 

of  the  transfer  problem.  They  generally  give  only  the  flux  and 

not  the  intensity,  but  the  computation  time  is  reduced  by  a  factor 
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Symbol s  are d e f i n e d  a s  f o l l o w s :  

- 

0 

V 

0 
A 

A 

0 

exact 

Edd iny ton  ( D r s .  Irvine, Esposito and Shet t le)  

E d d i n g t o n  + S i m i l a r i t y  ( D r .  Shett le) 

Del ta -Edd ing ton  ( D r .  Wis.combe) 

Double De l ta -Edd ing ton  (Dr. Bonnel) 

Two-Stream ( D r s .  Irvine and E s p o s i t o )  

M o d i f i e d  Two-Stream (Drs. Irvine and E s p o s i t o )  

Modi f ied   Two-Stream ( D r s .  Kerschgens ,  Raschke and P i l z )  

E x p o n e n t i a l  Kernel ( D r .  Broyniez) 

2.8 

2.7 1 

2.4 :I a 

e 

0 

0 

2.3, 'G 
I 1 I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
t 

F i g .  1 .  Haze L ,  TI = 1, E = 0.9, 
0 

Po = -1. (See R e f .  2 )  - 
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larger  than 100 or  even  the  use of a  computer  can  be  avoided. 

Moreover  they  give  simple  analytical  expressions of the flux. 

Between  them  we  have  classified  the  similarity  relations  which 

reduce  the  anisotropic  problem to an  isotropic  one,  the  Eddington, 

Two-Streamland  Exponential  Kernel  methods.  Various  modified 

versions of Two-Stream  and  Eddington  have  been  tried  with  success. 

Recently,  Meador  and  Weaver'  have  proposed  a  general  theoretical 

framework  to  compare  these  methods.  Figure 1 shows  the  net  flux 

versus T in  the  case of a  haze  layer  in  normal  incidence ( u  = - 1) 
and  for 8 = 0.9.  The  solid  line  corresponds to the  "exact"  values 

obtained  by  various  methods  within  an  agreement of a  few  tenth  of 

a  percent;  the  points  correspond  to  various  approximate  methods. 

0 

0 

The  worst  results  are  obtained  by  the  Eddington  and  Standard 

Two-Stream  methods;  the  accuracy  varies  from  a  few  to 10%. The 

best  results  are  given  by  the  Delta-Eddington,  the  Double  Delta- 

Eddington,and  the  Exponential  Kernel  methods',  with  an  accuracy of 

about 1%. Intermediate  performances  are  achieved  by  other  modifi- 

cations of Eddington  or  Two-Stream  methods. 

The  results  remain  about  the  same  when 6 tends  to 1, but 

*most  of  the  methods  are  a  little  less  accurate  in  oblique  than 

in  normal  incidence,  except  the  Eddington  method  which  becomes 

better. 

0 

If we  consider  now  increasing  the  optical  thickness,  we  may 

say  that  a  thick  conservative  cloud  is  the  worst  case  for  the 

Standard  Two-Stream  method  (accuracy % 24%)  and  the  best  for 

Eddington  method  (accuracy % 1%). But  again,  always  the 

Exponential  Kernel  and  the  Delta-  and  Double  Delta-Eddington 

achieve  an  accuracy  of  about 1%. 

. ~ " 

2Personal  communication  of  their  work is acknowledged  by  the 

author. 
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IV. REALISTIC  ATMOSPHERES 

A.  Inhomogeneous  Atmospheres 

It must  be  first  noted  that  the  case  we  have  called 

"homogeneous" is actually  the  case  where  only  the  extinction 

coefficient K is  function of the  altitude z (see  definition  of  the 

optical  depth T) , with  the  single  scattering  albedo  and  the  phase 
function  constant  throughout  the  atmosphere. 

A vertically  inhomogeneous  atmosphere  occurs  when  mixing 

ratio  of  scatterers  and  absorbers  varies  with  height (Go function 
of T), or  when  the  type of scattering  particles  varies  with  height 

(phase  function  varying  with T) . 

The  vertical  inhomogeneity  can  be  handled  by  the  equation  of 

transfer,  Eq. ( 4 ) ,  including  the  variable T in w ( T )  or/and  in 

~(T;P,$;I-I'$').  Most  of  the  methods  reviewed  for  the  homogeneous 

case  can  be  applied,  perhaps,  with  slight  modifications.  At  the 

limit,  the  vertically  inhomogeneous  atmosphere  can  always  be 

approximated  by  superposition of thin  homogeneous  layers.  Anyway, 

it  must  be  noted  that  the  computation  time  may  increase  rapidly 

with  the  inhomogeneity  (for  example,doubling  is  replaced  by  adding) 

and  that in.some  methods  numerical  difficulties  or  instabilities 

appear  (Spherical  Harmonics  or  Discrete  Ordinates). 

0 

The  horizontal  inhomogeneity  is  much  more  difficult  to  handle, 

as  it  can 

(1 - 

where  the 

be  imagined  from  the  equation  of  transfer 

partial  derivatives  appear.  This  case  comprises  the  very  important 
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problem  of  finite  clouds.  Here,  the  flexibility  of  the  Monte  Carlo 

Method  (Refs. 3, 4,  and 5) finds  all  its  advantages,  and  although 

a  few  attempts  have  been  done to develop  other  methods,  for 

example,invariant  imbedding  (Ref. 6) or statistical  methods 
(Ref. 7), the  only  results  obtained  for  finite  clouds  until  now 

have  been  obtained  by  Monte  Carlo. 

B. Spherical  Atmospheres 

For  some  problems,  we  have  to  consider  the  sphericity  of  the 

real  atmosphere.  This is particularly  important  in  remote 

sensing  of  the  atmosphere  from  twilight  measurements  or  from  limb 

scann,ing  by  satellites. 

Using  spherical  coordinates  with  reference  to  the  local 

vertical,  the  transfer  equation  has  the  form 

where  R is  the  earth  radius.  Here  again,  the  Monte  Carlo  method 

(Ref. 8) can be  applied  and  the  Dart  method  (Ref. 9) has  been 

especially  studied  for  this  case;  but  the  research  in  approximate 

analytical  methods  seems  premising  (Ref. 10). 

C. Scattering  with  Gaseous  Absorption 

All  whs.t  we  have  said  here  concerns  monochromatic  radiation. 

A  last  problem  appears  when  we  have  a  radiative  transfer  problem 

in  a  scattering  atmosphere  with  gaseous  absorption.  Then,  the 

number  of  monochromatic  problems  to  be  treated  becomes  prohibi- 

tive,  even  for  a  single  absorption  line.  Therefore,  approximate 
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methods  have  been  sought.  One  of  them-  consists  in  introducing  the 

photon  path  distribution P ( x )  (Refs. 11 and 12) which  is  defined  by 

where  the  subscript V refers  to  the  frequency V and  the  subscript 

c  to  the  continuum  outside  the  line; P(A) can  be  obtained  either 

directly  from  a  Monte  Carlo  calculation  or  by  the  inverse  Laplace 

transform 

When P(X) is  once  for all obtained,  the  intensity  at  any  fre- 

quency  of  the  spectrum  can  be  obtained  from Eq. (15). Moreover, 

it  is  possible  for  some  problems  to  define  various  mean  path 

lengths. 

V. CONCLUSION 

In the  case  of  plane-parallel  atmospheres,  even  with  vertical 

inhomogeniety,  several  methods  can  be  used  to  obtain  the  complete 

radiation  field  with  a  good  accuracy  and  a  reasonable  computer 

time.  If  only  the  flux  and.  the  heating  rate  are  sought,  fast 

approximate  analytical  methods  are  available. 

When  more  realistic  atmospheric  models  must  be  considered, 

the  Monte  Carlo  can  be  used  with  a  rather  good  accuracy,  but  at 

the  price of large  computation  times,  while  active  research  on 

faster  approximate  methods is carried  on. 
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source  function  for  thermal  emission 

sun  irradiance 

radiance 

radiance  matrix 

upward  radiance 

downward  radiance 

source  function 

absorption  coefficient 

absorption  coefficient  and  single  scattering  albedo 

in  the  continuum 

absorption  coefficient  and  single  scattering  albedo 

at  frequency v 
extinction  coefficient 

phase  function 

phase  matrix 

coefficients  of  the  phase  matrix 

photon  path  length  distribution 

Stokes’  parameters 

position  variable 

earth  radius 

diffuse  reflection  function 

diffuse  transmission  function 

altitude 

Mie  parameter  (ratio  of  circumference  to  wavelength) 

zenith  angle 

cos e 
sun  direction 

scattering  coefficient 

optical  depth 

total  optical  thickness 

azimuth  ansle 
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'j = a/K single  scattering  albedo 

direction  variable 
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DISCUSSION 

Turner: Do you  know.if  anyone  has  used  a  method  similar  to  the 
spherical'harmonics  method  using  other  orthogonal  functions,  for 
example,  Gegenbauer  or  Jacobi  polynomials? 

Lenoble: I have  never  heard  about  that  but'it  would  be  possible. 

Turner: It should  be  much  better  than  the  spherical  harmonics 
method  because  these  functions  more  nearly  represent  the  anisotropy 
of the  scattering  phase  function  and  with  fewer  terms  in  the  series 
expansion. 

Lenoble: Yes,  but  that  is  true  for  the  phase  function  alone. 

Turner: Yes,  but  one  can  expand  the  radiation  field  function  in 
a  series  of  these  more  general  functions. 

Irvine: But  when  you  do  the  multiple  scattering, it  is  convenient 
to  use  spherical  harmonics,  because  you  can  then  expand  the  inten- 
sity  in  a  Fourier  series  in  azimuth  and  each  azimuthal  component 
satisfies  an  independent  equation  of  transfer. 

Turner: But  there  are  addition  formulas  for  these  other  poly- 
nomials  although  they  are  considerably  more  complicated  than  those 
for  the  spherical  harmonics. 

Irvine: I don't  know  of  any  that  is  being  done. 

G a l :  I would  like  to  answer  some  of  these  questions.  We,  at 
LockheedPalo  Alto  Research  Laboratory,  are  applying  the  Hartel 
formulation  €or  multiple  scattering  by  spherical  particulates. 
Hartel  (Germany, 1941) reported  that  multiple  scattering  may  be 
solved  by  obtaining  solution  for  the  scattering  function  by  suc- 
cessive  scattering.  The  scattering  function  for  each  scattering 
order  may  be  written  in  terms  of  a  Legendre  series  expansion. 
Hartel  did  not  have  the  mathematical  tools  to  prove  his  idea. 
Since  then,  the  Legendre  expansion  is  available  for  a  spherical 
particle  and  my  colleague,  Dr.  Chou,  solved  the  radiation  transfer 
equation  for  a  plane  parallel  geometry.  Agreement  with  currently 
available  solutions,  such  as  Dave's  iterative  and  Monte  Carlo 
methods  are  excellent.  The  advantage  of  our  solution  is  that it 
requires  an  order  of  magnitude  less  computer  time.  This  work  will 
be  published  in  a  few  months. 

Lenoble: I would  like to have  it. 

Barkstrom: Two  comments.  The  first  comment  is  that  in  stellar 
atmospheric  work  and  some  recent  work  which  we  have  done,  there  is 
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an  alternate  procedure  which  breaks  up  the  equation.of  transfer 
into  a  flux  conservative  finite  difference  form.  The  computation 
time  is  comparable  with  that  of  the  doubling  method,  and  it  isn't 
bothered  by  vertically  inhomogeneous  atmospheres.  Secondly,  I  am 
not  sure  which  approximate  analytical  methods  you  are  referring  to 
in  the  three-dimensional  case.  There  are a number  of  diffusion- 
type  approximations  that  are  related  to  the  delta-Eddington  approxi- 
mation.  I  expect  they  are  going  to  appear  in  the  literature  very 
shortly. 

Lenoble: For  the  spherical  case, I was  referring  mostly to the 
work  by  the  Soviet  group  of  Sobolev  and  Minin  and  this  kind  of 
work.  But  we  are  now  working  on  the  report  for  spherical  atmos- 
pheres  and  for  three-dimentional  problems.  It  is  -just  at  its  very 
beginning  and I don't  have  much  information  on  this  work. 

B a r k s t r o r n :  These  methods  are  connected  with  problems,  such  as 
finite  clouds. 

Lenoble: But  for  spherical  problems  you  mentioned  the  problem  of 
stellar  atmospheres.  It is quite  different  because  you  don't  have 
the  solar  illumination so you  have  really  a  spherical  symmetry. 

B a r k s t r o m :  It  doesn't  matter;  the procedure.is  the  same. 

Unidentified  Speaker: What  are  the  publication  plans  for  the 
report  you  are  preparing  for  the  Radiation  Commission? 

Lenoble: Well,  the  first  draft  of  the  report  has  been  published. 
But  the  final  printing  is  to  be  done  at  NCAR.  Maybe  Professor 
London  can  give  some  more  information  on  the  publication. 

London: It  will  be  available  through  the  Radiation  Commission. 

Lenoble: But,  presently,  it  is  only  the  part  concerning  the  plane 
parallel  atmospheres. 
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SOME ASPECTS OF THE INVERSION PROBLEM 

IN REMOTE SENSING 

S. Twomey 
University  of Arizona 

A brief  discussion  of  several commonly  used methods for  
inversion--constrained  linear  inversion,  synthesis (Backus- 
Gilbert) methods and nonlinear  iterative  techniques for the 
Chahine type--is  given. I t  i s  demonstrated t h a t  a very  close 
connection ex i s t s  between  Backds-Gilbert solutions and those 
given b y  constrained  linear  inversion. 

A number o f  examples of  the  application of such methods 
are presented, showing t h a t  resolution i s  not  greatly d i f -  
f eren t   for   qu i te   d i f ferent  algorithms--a resul t   qui te   in  
accord with general theoretical  considerations: more 
"resolution" can be achieved a t  the expense of introducing 
greater a priori  b i a s  i n   t h e  procedure. 

I. INTRODUCTION 

When Kaplan  (Ref. l), i n  1959,   ou t l ined   the   poss ib i l i t i es   o f  

determining  atmospheric  structure  from  infrared  radiance  measure- 

ments,  there were i n i t i a l l y   p r o b a b l y  more scept ics   than   en thus ias t s .  

Nevertheless,  the  steps  toward  implementation  proceeded  faster  than 

most ( a t  least in   t e r r e s t r i a l   a tmosphe r i c   phys i c s )  and it w a s  only 

a few years  later t h a t  a crude  (horizontal)  temperature  sounding 

experiment w a s  carried  out  through  an  open window of t h e  

Meteorological   Satel l i te   Center   in   Sui t land,   Maryland.  A t  t h a t  

time, inversion  methematics  tended t o  be  concentrated  around  the 

determinat ion  of   coeff ic ients   in   arbi t rary  expansions of the  

unknown, and r e s u l t s  from the   f i r s t   a t t empted   i nve r s ion  were q u i t e  

promising  but,   being  restr-icted t o  t h e   c o e f f i c i e n t s  of a quadrat ic ,  
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no t  capable of coming very close t o  reality--which  contained  sharp 

"step" in   t empera ture   ak in  to  an  atmospheric  thermal  inversion  and 

could,   therefore ,  be modeled reasonably   on ly   i f  t w o  i n f l e c t i o n s  

could  be  allowed  into  the  solution.  This  implied a cubic   ra ther  

than a quadratic,   and a f a i r l y   r o u t i n e  improvement of the   invers ion  

from t h r e e  unknowns t o  four w a s  undertaken  by  the  Suitland  group. 

Disaster soon  ensued. The cubic  "improvement"  indicated  negative 

absolute  temperatures and super-adiabat ic   lapse rates, a te rpera-  

t u r e   d i s t r i b u t i o n  which w a s  physically  unacceptable,   but  which,  if  

it cou ld   ex i s t ,  would give  radiance  values  experimentally  undis- 

t inguishable  from those  given by the  much less spectacular  tempera- 

t u r e   s t r u c t u r e  which ac tua l ly   ex is ted .  

These f a c t s  are mainly  of   his tor ical   in terest   and are wel l  

known to  the  present   audience.  We s t i l l  f ind  a g rea t   dea l  of 

a t t en t ion   d i r ec t ed  t o  procedures  and  algorithms  for  inversion,  the 

implicat ion  being  that  a more sophisticated  numerical  technology 

can  s idestep  the  obstacles  which i n   t h e  1960s turned  modest  quad- 

ratic success  into  cubic  nonsense.  But  the  ambiguity of inversions 

is  fundamental,  caused by the  kernels,  which  describe  the  under- 

lying  physical   connection between  measured  and  sought  functions, 

and a successful  algorithm  can  only  succeed by making  an acceptable 

selection  from a l l  t h e   p o s s i b i l i t i e s .   T h a t   s e l e c t i o n  i s  a r b i t r a r y ;  

i t s  bas i s   does   no t   l i e   w i th in   t he  measurement o r   t he   i n t eg ra l  

re la t ionship  connect ing  sought   dis t r ibut ion  with  the measured 

quan t i t i e s .  

The simplest vers ion of the  indirect   sensing  problem: 

b .  

a 
gi = / Ki(x) f (xldx 

o r  

g = / k(x ) f   (x )dx  - a "  

b 

descr ibes  a kind  of  convolution  of  the  kernel  functions  with  the 

unknown or  "sought"  function f (x) .   In   real   a tmospheric   physics  
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problems,  K.(x) i s  fundamentally  smooth,  being i n  most cases 

necessa r i ly   pos i t i ve  and e s sen t i a l ly   exponen t i a l   i n   cha rac t e r ,  of 

the  form 1. < . e  7 or I, $ ( u ) e  du with 6 ,  or  $ (u) non- 

negative.  Smoothness  of K . ( x )  implies a d iminish ing   sens i t iv i ty  

of  gi to   higher   f requency components i n   f ( x ) ,  and a fundamental, 

inherent   ins tab i l i ty   and   ambigui ty   in   any   in ference   o f   f (x) .   This  

has  nothing t o  do  with  inversion  a lgori thms,   l inear   or   nonl inear ,  

simple or complicated:  they  do  not  even  have  to  be  brought  into 

the   p i c tu re  t o  show the  fundamental  ambiguities. W e  simply  cannot 

g e t  something for   nothing.  

1 

-k *X m -xk (u) 
. J  7 3 

1 

Figure 1 shows  two curves  from  an  early  paper by Wark and 

Fleming  (Ref. 2 ) ;  it shows kernels   dt /d   In  p for   an Elsasser band 

with maximum cont r ibu t ion  a t  100 m b  and a l s o   f o r  a constant  mass 

absorp t ion   coef f ic ien t   ( i , e . ,   s imple   exponent ia l   behavior ) .  (1 bar 

= 100 kPa.) N o t e  tha t   the   wid th  and  smoothness of the t w o  a r e  com- 

parable--the more r e a l i s t i c  band  model is  s l ight ly   narrower  but  

not  markedly so. This   impl ies   tha t  a great  deal  can  be  learned by 

looking a t  simple  exponential   kernels  (which  bring  us  to a Laplace 

transform  inversion  problem)  or  kernels  of  the form (which 

have the  advantage  that   they  a t ta in  maxima a t  x = y-l. 

The power spectrum  of  the  kernel  can  easily  be tal- 

culated;  it decreases  rapidly  with  increasing  frequency,  asymptot- 

i c a l l y  as w . - 2  

Figure 2 shows the  Fourier   t ransform  of  a ke rne l   r e l a t ed  t o  

the   i nd i r ec t  measurement  of p a r t i c l e   s i z e   d i s t r i b u t i o n  from l i g h t  

sca t te r ing .   This   i l lus t ra tes   an   impor tan t  and often  overlooked 

point--that a physical   kernel  may have i n  its spectrum a b l ind  

spot  a t  r e l a t i v e l y  low frequencies,  even  though it has   no t   ye t  

begun i t s  ult imate  asymptotic  decline.  

Early  inversion  procedures were l i n e a r   i n   n a t u r e  and  amounted 

t o   t h e   i n f e r e n c e   o f   c o e f f i c i e n t s   i n  some expansion of f ( x )   i n   t h e  

f o m  
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KERNEL 

F i g .  1. Kernels for E l s a s s e r   b a n d   a n d   s t r i c t l y   e x p o n e n t i a l  

a b s o r p t i o n .  ( F r o m  Ref - 2 .) 

PQWER  SPECTRUM 

F 

N 

F i g .  2 .  Power spec t rum for Mie s c a t t e r i n g  kernel. 
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f(x) = a + h~ t- cx2+ .,, 
or 

f(x) = a. + a @ (x) + a Q (x) + ... 1 1  2 2  

but  soon  use  of  the  values  f  (x,), f (x,) . . . f  (xn)  of  f  (x)  at 
selected  tabular  values  of x became c m o n  practice.  There  is 
fundamentally  no  difference  between  the  two  approaches  since  f.(xl), 

f(x2),  etc.  can  be  identified  with  coefficients  in  an  expansion 

of  f(x)  in  terms  of  a  set  of  functions 4 (x)  which  are hity at k 
x = x  and  fall  linearly  to  zero at x = x and  x = x 

k - 1  k + 1 -  
With 

further  development  of  inversion  algorithms,  there  tended  to  be  a 

return  to  the  expansion  approach  in  a  somewhat  different  guise, 

in  which  empirical  orthogonal  functions  were  used  for  the  functions 

@i(x).  Use  of  such  functions,  coupled  with  constraints  resting on 

the  fundamental  properties  of  empirical  orthogonal  functions (EOF's), 

led  to  more  "realisticI1  inversions.  Nevertheless,  it  is  important 

to  realize  what  is  going  on  in  such  cases:  one forms a  set of 

orthogonal  functions  which  are  linear  combinations of observed 

functions;  these  latter  may  be  measured  with  instruments  of  high 

resolution  and  can  contain  harmonic  components  which  may  extend  to 

frequencies  to  which  a  given  indirect  sensing  procedure  (with 

finite  accuracy,  smooth  band-limited  kernels)  is  "blind." 

Furthermore,'orthogonality of  the  functions $,(x), $n(x)  does  not 

imply 

k 

so two  independent EOF's could  be  undistinguishable  to  the  remote 

sensing  measurement. A stable  solution  is  possible  only  because, 

for  example,  one  demands  that  the  expansion  coefficients  fall  off . 

at  a  rate  similar  to  that  found on average  in  the  original  popu- 

lation  of  measured  soundings  (e.g.,  a  large  set  of  radiosonde  pro- 

files).  In  this  way,  a  greater  degree  of  structure  can  be  retained 

in  a  solution  but  it  is  in  a  sense  pseudo-resolution--the  solution 

is  permitted  to  "wiggle"  in  a  way  which  is  expected  on  the  basis of 
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past data .   This   kind of procedure  while i n  many ways eminently 

reasonable,   does  nevertheless  introduce a s t rong  probabi l i ty   of  

bias--for  example,  solutions  for  unpopulated or  oceanic areas 

( those   fo r  which ind i rec t   sens ing  is  l i k e l y  t o  be  most  valuable) 

in   essence  become pushed  toward a behavior   pat tern  representat ive 

i n  some sense of more populated  regions where d i r e c t  measurements 

are most frequent.  Since  people  and  radiosondes are simply  not 

randomly d i s t r ibu ted   ove r   t he   g lobe ,   t he   d i s to r t ions  produced 

through  such  bias are sys temat ic   in   na ture .  On t h e   p a r t  of  general- 

c i r cu la t ion  and  numerical  weather  prediction  researchers, a degree 

of disenchantment  with  satell i te-based  temperature  soundings seems 

t o  have emerged recent ly ;  it i s  germane t o   a s k  how  much the  afore-  

ment ioned  bias   contr ibutes   to   this   disenchantment .  

It i s  also  worth  point ing  out   that   the   a tmosphere as a whole 

i s  general ly  close t o  a balanced  condition;  one’s  primary  concern 

in   p red ic t ion  i s  with  departures  from that  balance.   There i s  no 

skill needed t o  predic t   c loudless   condi t ions   wi th  midday  tempera- 

tu res   near   the  80s fo r   Ar i zona   i n .win te r ,   o r   t o   p red ic t  showery 

condi t ions  with  s teady  t rade  winds  for   Hilo,  H a w a i i .  It i s  the  

departures  from these  norms t h a t   c o n s t i t u t e   t h e   p r e d i c t i o n  problem 

and i f  we d i s to r t   t empera tu re   p ro f i l e s  toward the  expected norm, it 

must adversely  affect   the   chances of predicting  excursions away 

from the  norm. 

11. 6SUME. OF COMMONLY USED METHODS 

A. Constrained  Linear  Inversion 

This   cons is t s   in  i t s  most direct   appl icat ion  of   the  conver-  

sion of the   in tegra l   equa t ion   to  a quadrature form i n  which the 

funct ion   f (x )  i s  replaced by a vector   containing  tabular   values   of  

f (x) i n  i t s  elements  (the  behavior  of f (x)  between  the  tabular 

po in ts   be ing   impl ic i t ly   spec i f ied  by the  quadrature  scheme),  and 

the  resul t ing  matr ix-vector   equat ion is inverted t o  f ind   the  most 
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acceptable  vector f, which s a t i s f i e s   t h e  fundamental   relationship 

t o  g to   w i th in  a prescribed  accuracy. "Most acceptable" is almost 

a lways  specif ied  numerical ly   in   terms of minimization  of some quad- 

ra t ic  form Z*Hf i n  f which w e  a r b i t r a r i l y   i n t r o d u c e   t o  gauge 

"acceptab i l i ty . "   In   genera l ,   the   so lu t ion  is  

- 

W e  obtain a useful   solut ion  provided H i s  framed t o  be i n  some 

sense a measure  of  the  smoothness  of E .  One can,  of  course,  take 

out   any   in i t ia l   guessed  or known expected  value f and remove t h e  

corresponding  term Af from CJ before  invert ing.  The shape  of f 

is  a r b i t r a r y  and i f  it contains  wiggles  or  other  high-frequency 

f ea tu res   t hese  w i l l  show up in   the   so lu t ion .  But t h i s  i s  a r t i f i c i a l  

i n   t he   s ense   t ha t   fo r  many physical   kernels   these  could  be  f i l tered 

from f without  changing g percept ibly.  

0 

0 -0 

0 " 

Linear  constrained  inversion methods are simple  extensions  of 

least-squares  methods for   solving  systems  of   l inear   equat ions.  

Methods, i nwhich   f (x )  i s  described by a vector  of  expansion  coef- 

f i c i en t s ,   a r e   a lgeb ra i ca l ly   equ iva len t .  I t  i s ,  however, l e s s   e a s y  

to  formulate  measures  of  acceptabili ty  in terms of  such  coefficients 

i f   the   expansions  are   polynomials   or  are made in  terms of a r b i t r a r y  

orthogonal  functions  (e-g. ,   Fourier  or  Fourier-Bessel  expansions,  

Tchebycheff  polynomials,  etc.). B u t  if,when  empirical  orthogonal 

funct ions are used,  one  has a priori  s ta t i s t ica l   g rounds   for   ask ing  

the   coe f f i c i en t s   t o   d imin i sh  a t  a known r a t e ,   t h i s   p r o v i d e s  a 

valuable method o f   i nve r s ion   i n   s i t ua t ions  where a s i zab le  back- 

ground  of da t a  measurements f o r   f ( x )  i s  ava i l ab le .   In   t h i s   p ro -  

cedure,  one i s  a sk ing   t ha t   t he   so lu t ion  f ' ( ~ )  be  " l ike"   the popu- 

l a t i o n  from  which the  orthogonal  function set w a s  constructed.  

B. Synthesis Methods 

All l i n e a r  methods  of  solution  produce a s o l u t u i o n   f l ( x )  which 

f o r  any  value  of x cons is t s   o f  a linear  combination  of  the  measured 

. 
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g ' s ,  i .e. , 

The a r r ay  b i s  o f t en   no t   ca l cu la t ed   exp l i c i t l y ,  as i n   t h e  case 

of constrained  l inear   inversion  methods,   in  which 1 )  b 1 )  would be 

given by (A*A + yH) . The Backus-Gilbert  (Ref. 3 )  so lu t ion  

d i rec ted  i ts  a t t e n t i o n   e x p l i c i t l y   t o   t h e   a r r a y  b and the con- 

s t r a i n t s   a r e   f o r m u l a t e d   i n  terms of  the b . Equation (2 )  has   the 

consequence tha t   t he   so lu t ion   va lue  f ' ( s )  can  be  written 

k j  

k j  -lA* 

k j  

k j  

so t h a t  C b . K .  (x)  is  a "scanning  function''  which,  of  course, 

would have t o  be the   de l t a   func t ion  6 (x - x ) if f ' ( x  ) w a s  t o  

reproduce f ( x  ) exactly.   That is  an  evident   impossibi l i ty  and the  

l inear  inversion  problem  can  be  regarded as a search for  r ea l i zab le  

scanning  functions which  approximate  the  delta  function and azTe as 

f a r  as poss ib l e   f r ee  from side  lobes  and  other   undesirable   features  

which  could d i s t o r t   f ' ( x )  and  produce i n  it a r t i f i c i a l   p e a k s  or 

troughs. It  i s  s u f f i c i e n t  t o  consider  only  normalized  scanning 

funct ions,  so t h a t  

k k7 7 

k k 

k 

lb Sk(x)dx = 1 
a 

S ince   t he   coe f f i c i en t s  b u l t imate ly   mul t ip ly   the  errors i n   g ,  

s t a b i l i t y  i s  ensured i f   t h e  magnitude  of 1. b = I bk i s  

l imited.  To complete  the  Backus-Gilbert  procedure,  one,  therefore, 

needs t o   s o l v e  a minimization  problem  which i s  very  s imilar  t o  that '  

encountered  in  constrained  l inear  inversion. An array  of  coef- 

f i c i e n t s  5 i s  t o  be  determined  which  minimizes a spread Q* S b 

measured  about  the  point x = x with 5 Constant  and 

&*kI also constant  (k being   wr i t ten   here   for   the   a r ray  

k 

I k j  

k k k-k 

k'  

-1 Ib K.(x)dx, j = 1, 2 ,  3 ... m ) .  The  two cons t ra in ts   (one   res t r ic -  
a 3  
t i n s   t h e  magnitude  of  the  coefficients,   the  other a normalization 

. 
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constraint)   imply t w o  Lagrangian  multipliers,   but  the  solution 

algebra is again quite straightforward and w e  obtain 

B is  readi ly   ca lcu la ted   expl ic i t ly - -s ince  & . * @  must be uni ty ,  

f3 must be &* (S + yI)-'Icc. For   the  par t icular   spread  measure 

/ ( X  - ~ ~ ) ~ S ~ ( x ) d x ,  Sk i s  III(x - x , ) ~ K ~ ( x ) K ~  ( X ) &  1 1  , and y p l ays  

a r o l e  similar t o  tha t   p layed  by y in   cons t ra ined   l inear   . invers ion ,  

i n   t h a t  as y dec reases   i n   s i ze ,  error magnification  increases and 

the  scanning  function becomes narrower,  with  diminishing y .  

Backus-Gilbert  solutions  involve  covariance  matrices C = 

1 1  JKi(x)K.  (x)dx 1 1  and  vectors  such as I(JKi(x)dx 1 1  and 1 1  Ki(xK) 11. 
To the  accuracy  of  quadrature,these  quantit ies  are  connected  with 

those  occurr ing  in   constrained  l inear   inversion  through  re la t ion-  

ships  C = AY, ki = I(  /Ki(x)dx 1 1  = A$, and so on. Y i s  wr i t t en   fo r  

the  m X n tabula t ion  1 1  Ki (x . )  1 1  of   the  kernels .  By these   r e l a t ion -  

ships,   Backus-Gilbert   solutions  can  be  transformed  into  relation- 

ships   involving  the  quadrature   matr ix  A and the  measured  g,  and a 

very  close  relationship  can  be  established between so lu t ions  

obtained by the  t w o  methods. One s imple  such  re la t ionship  appl ies  

t o   t h e   d i r e c t   i n v e r s e  f = A-lg, which can also be obtained by the  

Gilbert-Backus  procedure i f   t he   squa re  norm of   the  difference 

between the   de l t a   func t ion  and the  scanning  function i s  t h e  basis 

for   opt imizat ion;   carrying  out   this   opt imizat ion  (unconstrained)  

one  obtains a so lu t ion  which the   subs t i t u t ion  C = AY transforms 

i n t o   t h e   d i r e c t   i n v e r s e  A-lg. 

I k  -1 
I k  

7' 

7 

TI - 

The trade-offcurvesprovided  automatically  in  Backus-Gilbert  

inversion shows how  much accuracy  of  measurement is  needed t o   g i v e  

a cer ta in   reso lu t ion .  As w e  change y i n  Eq. ( 4 ) ,  the  width  of  the 

scanning  function  and  the  magnitude  of  the  b-vectors  change;  the 

l a t t e r  magnitude  deternines how  much error   magnif icat ion  can  enter  

i n to   t he   so lu t ion  (which i s  f k '  = bk*g + bk e )  , and so error mag- 

n i f i ca t ion   can   be   p lo t t ed   aga ins t   r e so lu t ion .  Such a p l o t ,   f o r  

* 
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Fig. 3. Trade-off curves by Backus-Gilbert  procedure f o r  

kernels o f  the  form  xeeYx.  Several  values  of y, giving  maxima at 

x = 0.2, 0.4, 0.6, and 0.8, are  represented. 

kernel  xe-yx i s  shown in   F ig .   3 .  It i s  appa ren t   t ha t  beyond a 

certain  point  (one-half   width  of  scanning  function 0.2 times t h e  

in t e rva l   o f   i n t eg ra t ion ) ,  a huge increase   in   accuracy  i s  needed t o  

produce  even a small i nc rease   i n   r e so lu t ion .   Th i s  is  not an a r t i -  

f a c t  of  the  Backus-Gilbert method (Ref.   3)--i t  i s  a property  of   the  

kernels  involved  and,  furthermore, is  not   s ign i f icant ly   in f luenced  

by t h e  number of  kernels  used,  provided  that  a reasonable number 

are employed (7 t o  10,  say) .   Similar   plots   can  be made of  resolu- 

t i o n a g a i n s t  number of kerne ls   ( for  a f ixed   e r ror   magni f ica t ion)  and 

they show a rapidly  diminishing  re turn  with  fur ther   increase  in  

number of  kernels.  
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C. Statist ical  Inversion Methods 

Quite apart from l inear   inversion  techniques  with  constraints  

based  on statistics (e.g., EOF e x p a n s i o n s ) ,   s t a t i s t i c s   f i n d  appli- 

cation  even more d i r e c t l y .  One sees   i n   i nve r s ion   l i n t e ra tu re  a 

very  natural   tendency t o  use  comparisons  between  "measured" d a t a  

(radiosonde  soundings,   for  instance) and data   given by inversion 

as a bas is   for   judging   the   re la t ive  merits of  the  various  numerical  

procedures.   If  w e  can make enough  simultaneous measurements of 

both  funct ions  g(y)  and f ( x ) ,   t h e n   t h e   r e l a t i o n s h i p  between g ( y )  

and f ( x )   i n   p r i n c i p l e   c a n  be  "learned" from these  measurements, 

provided  only  that  it i s  physical ly   reasonable   to  assume t h a t   t h e  

f++g r e l a t ionsh ip  is  l i n e a r   t o  a good approximation.  This i s  

e s sen t i a l ly   t he   p rocedure   fo l lowed   i n   ce r t a in   k inds   o f   " s t a t i s t i ca l "  

inversions where a matrix ( B ,  say) i s  infer red  from a s e t  of 

pa i r ed   d i s t r ibu t ions  f I and g. One is  seeking   to   l earn  B, where 
% 

% 

and a number of fairly  obvious  minimization  approaches  can be fo l -  

lowed t o  minimize I E I o r  some o the r   su i t ab le  norm. One can ,   for  

example, f o r  any spec i f ied  x = 5 ( i .e . ,   e lemental   posi t ion  within 

f), so lve   for   the   k th  row of B ,  imposing as usual a c o n s t r a i n t   f o r  

s t a b i l i t y .  Thus, i f   t h e   k t h  r o w  of B is  b we have 

k 

% 

% -k' 

for  every set of m measurements. I f   f l k   deno tes   t he   va lue   o f  f k 
from the  Rth measurement  and g i s  the  corresponding array of g- 

values,  one  can write 
- R  

, 
II I I 1 1 1  II II1111 I I  II 1111111111 I 111 II 1111 
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Ik 

2k 

'mk 

and solve b  For  each k (row of B)  the  procedure  can be repeated 

and thereby a  complete matrix B generated. The cons t r a in t  

Constant  ensures  error  magnification, t h e  cons t r a in t  Q *Q = k k  
(variance of f ) re la tes   the   permi t ted   var ia t ion  i n  the  solut ion 

to   the   observed   var ia t ion  a t  the  kth  level.   Rather  than computing 

B row  by row, it can  be  obtained i n  t o t o   i f   t h e   s e t s  of n- 

dimensioned  vectors E and of m-dimensioned vec tors  g a re   co l l ec t ed  

into  matr ices .  One version of t h i s  procedure  considers a s e t  of 

measured vec tors  f l ,  f2, ... f and associated measured g l ,  q2, 

-k' 'L 

'L bk - 
- 

k 

% 

R - 
.. . g with -R 

f l  = E  5J1 + E  

f 2 = E  9 2 + E  
I 

which gives  

F is essent ia l ly   the  cross-covariance  matr ix  of the  f ' s  and g ' s  

while G i s  the  covariance  matrix of t h e   9 ' s .  Again, cons t r a in t s  

must  be appl ied  to   br ing  about   s table   solut ions i n  which the   ind i -  

vidual  elements  of B are   not   a l lowed  to  become la rge  and  exces- 

s ive ly   o sc i l l a to ry .   Th i s  can  be  done i n  exact ly   the same way as 

'L - - 
% - 

'I, 
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I 

is done i n   t h e  case of vector equations. It is  the  r 6 w s  of B t h a t  

need  individually t o  be  constrained  and  this  is most e a s i l y  done 

i f   t he   equa t ion  for b , t h e   r t h  row of B can  be  writ ten: 

% 

* 
-r % 

G'b  = f + E 
-1: -r  -r 

which  can  be  solved  under  the  constraint b br = Constant by 
* 

r 

b = (G * G + VI)-' G*f -r  -r 

I f  more should  be known about   the   e r ror   s ta t i s t ics ,   they   can   be  

incorporated  into  the  solut ion  process  a t  the  expense  of a little 

additional  complexity. 

D. Nonl inear   I terat ive Methods 

L inea r   i t e r a t ive  methods  have  found  application,  but  they  are 

not  fundamentally  different  from  other  linear  methods.  Nonlinear 

i t e r a t i v e  methods,.on the   o ther   hand ,are   d i f fe ren t  and  appear t o  be 

capable  of  giving good inversions where  more d i r e c t  methods  have 

d i f f i c u l t y .  Such  methods  were  applied t o  atmospheric  sounding by 

Chahine  (Ref. 4 )  and  have  been successfully  used  in  cloud- and 

par t ic le-s ize   dis t r ibut ion  problems and  elsewhere. They cons i s t  

of  taking a f i r s t   g u e s s   f 0 ( x )  €or t h e  unknown f ( x )  and  then modi- 

fying it so a s   t o  improve the  discrepancies  between the  measured 

gi  and g ! = Ki (x) f (x)  dx.   In some a p p l i c a t i o n s   t h e   e n t i r e   s e t  of 

gf   a re   ca lcu la ted  and t h e   f i r s t   g u e s s  (or subsequent i terate) is 

updated  simultaneously a t  a l l  tabular   x-values;   in   other   appl i -  

c a t i o n s   t h e   f i r s t  guess and a l l  subsequent iterates are updated 

as soon as one  value  for f' has  been  calculated.  There  does  not 

appear t o  be  any  clear-cut  advantage  of  one  procedure  over  the 

o ther .  

1 
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Adjustment  methods in   nonl inear  i terative a lgor i thms  re ly  

on t h e  principle t h a t   t h e  change i n  gi r e s u l t i n g  from  an  adjust- 

ment i n   f ( x )  around x = 5 i s  proport ional  t o  the   va lue  o f  K i ( E ) .  

I n  some algori thms  the  value of f (x) i s  changed  only where Ki ( 5 )  
is  g r e a t e s t ,   b u t   i f   t h e   t a b u l a r   i n t e r v a l s  are closely  spaced,   high 

frequencies may thereby  be  introduced  in   proport ions  that   can 

become excessive. An a l t e r n a t i v e ,  which i n   t h e  writer’s experience 

can  be  superior,  is  t o  make the  change a t  x = 5 proport ior ia l   to   the 

value  of  the  kernel  there.  A useful  algorithm  based on t h i s  

p r inc ip l e  is  as follows:  given  an i terate  f ( x ) ,  t h i s  is  adjusted 

by comparing g and  g! = J: ICi (x) f (x)dx and  computing the  new 

i t e r a t e  as 

m 

i 1 m 

This makes the   g rea t e s t   p ropor t iona l  change  where K . ( X )  i s  g rea t e s t  

and makes  no change  where K.(x)  i s  zero. 
1 

1 

This  and  several   other similar algorithms have  been  used  on 

a variety  of  problems and genera l ly  show e x c e l l e n t   s t a b i l i t y  and 

independence  of  the first guess  (see  Fig.  4 ) .  With nonnegative 

kernels  and p o s i t i v e   f i r s t   g u e s s ,  no i t e r a t e  w i l l  become negative 

anywhere  provided none of  the g values are zero and max ( K . ( x ) )  < I, 

a condition which can  always  be  ensured by appropriate   scal ing.  One, 

therefore ,   has  a nonnegat ivi ty   constraint   bui l t   in to   the  a lgori thm 

and the re  i s  l i t t l e  doubt   tha t   tha t  i s  a major inf luence on the  

s t a b i l i t y  of the  inversion.  Since  products of kernels   are   generated 

as the  i teration  proceeds,   the  bandwidth of admissible  frequencies 

inc reases   r ap id ly   wha teve r   t he   f i r s t   guess ,   bu t   t h i s  i s  a second- 

order  process and in   p rac t ice   h igh   f requency   oschla t ions   ra re ly  

seem t o  be a problem in  inversions by t h i s  method  (whether it be 

appl ied   to  computed data   or   real   measurements) .  

1 

The r e l a t i v e  change made i n   f ( x )  a t  every  step  can  be  kept 

small simply by l imi t ing  it wi th in   t he   a lgo r i thm;   t o   t he   f i r s t  
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F i g .  4 .  Iterative  nonlinear  iflversion on a part ic le   s iz ing 

problem. Solid  l ine and open c i rc les   re fer   to   the  two very d i f -  

ferent  f i r s t  guesses f (x) (shown dashed). 1 

order  the  solution  thus  produced i s  a linear  combination of t h e  

kernel  functions.  Such a solution  can  be  generated by l i n e a r  

methods also --e.g. , w e  write f (x) = ci SiKi(x) , and so lve   for  5. 
The equat ion  for  5 is  

C being  the  kernel  covariance matrix.  The connection  between non- 

l i n e a r   i t e r a t i v e   s o l u t i o n s ,   n o n l i n e a r   i t e r a t i v e   s o l u t i o n s   w i t h  
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l imited  adjustments and d i r e c t   l i n e a r  methods  might  usefully  be 

inves t iga ted  by systematically  comparing resu l t s  given by the  

three methods f o r   t h e  same problem. The writer is not  aware  of 

t h i s  having  been  done a t  the  time of  writ ing.  

111. ASSESSMENT OF THE VARIOUS PROCEDURES 

A. Comparison  of Results  on a Standard  Problem 

There are many ways of   doing  this   and  they w i l l  not  always 

g ive   the  same answer. It i s  never the less   in format ive   to   t ake  a 

very  simple  problem and solve it i n  a number of ways. This  has 

been  done as follows: 

K .  (x) = xe  1 
-y. x 

( y .  = 0.1, 0 .2 ,  ... 1.0, 1.2, 1.4, ..., 
2 . 0 ,  2 . 5 ,   3 . 0 ,   3 . 5 ,  4 ,  5 ,  ... 10) 

1 1 

f ( x )  = 1 - 4(x  - 1/21 
2 

With th i s   i n t eg rand ,  a simple  weighted  trapezoidal  quadrature  gave 

the   g .   w i th   an  rms error   of  0.1% over a l l  y-values.  This  problem 

has  been  solved i n  a var ie ty   of  ways and the   so lu t ions  are shown 

on the  Fig.   5.  They a re :  

1 

a. Constrained  l inear  inversion  with minimum cons t ra in t  H = 

I (i. e . ,  minimum "power") . 
b.  Backus-Gilbert  inversion,  error  magnification :: 100 

(Ref. 3 ) .  

c .   Chahine ' s   o r ig ina l   i t e ra t ive  method, only  one  ordinate 

adjusted  per  step (Ref. 4 ) .  

d. A modification  of  the l a t te r ,  as described  above. 

e. Constrained  l inear   inversion  with end ,points  f ixed a t  

t he i r   co r rec t   va lues   [ f (O)  = f(1) = 21. 

f .  Constrained  l inear   inversion  with end poin ts   f ixed  a t  

approximate ly   the i r   cor rec t   va lues   f (0)  = 1.95, f ( 1 )  = 2.05. 
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F i g .  5 .  Inversion b y  several  different  inversion methods. 
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There i s  no  point  whatever i n  t ry ing  t o  grade  the  methods  on 

the  basis of these  tests. The r e s u l t s  are shown mainly t o  danon- 

strate tha t   reasonable   invers ions   can  be obtained by each of t h e  

methods  and tha t   r a the r   d rama t i c  improvements  (such as from 

Figs.  5 (a) t o  5 (e) ) can  be  achieved when w e  b r i n g   i n  a p r i o r i  

knowledge.  But, as F i g .   5 ( f )  shows, w e  must be su re  of t h i s  

a p r i o r i  knowledge;  otherwise, more harm than good i s  done by i t s  

incorporation. 

B. Resolution 

There is a very  simple method  whereby we can make estimates 

of the  resolut ion  of   an  inversion  procedure  in   toto.  To do t h i s ,  

w e  s imply  take  the  array  of  g values   corresponding  to ' the  special  

c a s e   f ( x )  = 6(x - xo)   and  appl ied  the  inversion  a lgori thm  to   that  

g-vector,   obtaining a d i s t r i b u t i o n  which w e  c a l l   r . ( x o ) .  A pe r f ec t  

inversion  procedure would r e tu rn   6 (x  - x ) when given as input   the  

g-vector - (k(xo) - , i .e . ,  (K1 (xo) , K2(xo), . . . Km(xo)),  and  the  extent 

t o  which  any  procedure f a i l s   t o  d'o t h i s  is  a usefu l   ob jec t ive  

gauge  of i t s  reso lu t ion .  (It should  be  emphasized that  "procedure" 

here  encompasses t h e   s e t  of kernels  which are   used,  which play a 

more important  role  than  the  algorithm  i tself   in  determining 

reso lu t ion   or   l ack  of it.) 

i 

- 
0 

Some examples of r e s o l u t i o n   t e s t s  by t h i s  method a r e  shown i n  

Fig. 6. We also have  included in  the  figure  Backus-Gilbert  (Ref. 3) 

scanning  functions  for  the same s e t  of kernels  and it should be 

noted   tha t   for   l inear   invers ion   methods   the   resu l t   g iven  by the  

above 6 funct ion tes t  i s  i n   f a c t  a scanning  funct ion,   i .e . ,   the  

solution  obtained i s  a convolution  of  that   function  with  the  origi-  

na l  f ( x ) .  In   the   case  of nonl inear   inversions,   that   does   not   hold 

t rue ,   bu t   t he   s ign i f i cance   o f   t he   d i s t r ibu t ion   r (x  ) i s  still 

c l ea r .  
0 
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C. Merits and  Disadvantages 

Each of   the  procedures   possesses   cer ta in  merits. The con- 

s t ra ined   l inear   invers ion  is  f a s t ,   e s p e c i a l l y  when a l a rge  number 

of  observed g vectors are t o  be  yrocessed i n   t h e  same way; it is  

objec t ive  when smoothness cons t r a in t s  are employed,  an6 it allows 

anything  which w e  may k n o w  a b o u t   f ( x )  t o  be b u i l t   i n t o   t h e  con- 

s t r a i n t .  The Backus-Gilbert  (Ref. 3 )  method is  a e s t h e t i c a l l y  

appea l ing   in   tha t   the   scanning   func t ion   can   be   ca lcu la ted  and 

graphed. S t a t i s t i ca l   t echn iques   g ive  more r e a l i s t i c  soundings 

than  the  other  methods.  Nonlinear  iterative  methods  avoid  the 

necess i ty  t o  formulate exp l i c i t   cons t r a in t s .  They can accommodate 

a wide  range  of  magnitude i n   f ( x )  and  they seem genera l ly  t o  be 

superior   with  respect   to   resolut ion,   and  tolerance  of   errors .  

I V .  CONCLUDING REMARKS 

The preceding  discussion w a s  not   intended  to   be a step-by-step 

review  of  inversion  problems  and  algorithms.  Rather, a number of 

se lec ted   po in ts  were g iven   a t t en t ion   p r imar i ly   i n   o rde r  to  demon- 

s t ra te  t h a t   t h e r e  is n o t  a g rea t   dea l  of difference  fundamentally 

between the  var ious  procedures .  The d i f fe rences  l i e  r a t h e r   i n   t h e  

basic  selection  process  (without which no s table   solut ion  can  be 

obta ined) .   I f  w e  decide t o  select   the   smoothest   solut ion,  we 

necessar i ly  damp out   features   such as the  t ropopause;   i f  w e  s e l e c t  

the   so lu t ion  which i s  c l o s e s t   t o  some s t a t i s t i ca l   expec ta t ion ,   such  

features w i l l  appear, b u t  no t   necessar i ly  i n  t h e   r i g h t  place; we 

may a l s o   t h e r e b y   f a i l  to  see rare but  real and  important  excursions. 

It i s  misleading to  judge  the  resul t   of   an  inversion on the   bas i s  

of  "reasonableness."  Indeed,  in  the case of such  things as temper- 

a t u r e  and water vapor  soundingsli t  seems more appropr i a t e   t ha t   t he  

se l ec t ion  of "most su i t ab le"   cons t r a in t s  and f i l t e r ings   be   based  

on what is going t o  be  done  with  them,  not on some subject ive 

judgment  which  can  be grea t ly   in f luenced  by the   sca l ing ,  etc. ,  

chosen t o  d i sp lay ,   i n  some form or other ,   " t rue" and ''computed'' 
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soundings,  thickness  plots  or  whatever.  Nobody  really  cares  what 

the  temperature  is  over  some  point  at 9 krn (30,000 ft)  in  mid-pacific 

nor  for  that  matter  what  the 200 mb thickness  is  there  or  how  much 

water  vapor  resides  above  a  particular  level.  These  quantities 

primarily  provide  input  for  analysis  and  prediction  procedures. 

Many  of  these  procedures  are  fundamentally  nonlinear  but  may.. 

perhaps,  be  approximated  closely  by  a  linear  operation.  In  a 

very  qualitative  and  general  way,  one  might  look  at  the  prediction 

of  tomorrow's  wind  field  in  the  Pacific  as  an  operation  on  today's 

field  and  today's  satellite  radiance  data.  If  today's  and 

tomorrow's  fields  were  accurately  known,  statistical  or  other 

techniques  could  be  utilized  to  optimize  the  prediction,  virtually 

ignoring  the  physics  involved.  If  this  is  not  possible,  at  least 

the  selection  of  "best"  from  the  large  population  of  profiles 

w h i c h   a r e  all e q u a l l y   a c c e p t a b l e  from the r a d i a n c e  point of view 

should  surely  be  based as  much  as  possible  on  the  intended  appli- 

cation  of  the  soundings,  and  users  of  inversion  data  should  be 

more  actively  brought  into  the  selection  process. 

As was  mentioned  earlier, a p p r e c i a b l e  improvement  on  resolu- 

tion  by  improving  the  accuracy of measurement  is  hardly  practicable 

since  a  very  great  improvement  in  accuracy  produces  only  a  very 

modest  improvement  in  resolution.  There  does  appear  to  be  room 

for  improvement  in  accuracy so far  as  the  kernels  are  concerned. 

SYMBOLS 

kernel  function 

elements 

'I sought 'I 

function 

time 

pressure 

of  the  kernel  function 

function 

representing  measured  quantities 
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I 

DISCUSSIONS 

Chahine: You  have  made  a  flat  statement  that  this  type  of  integral 
equati0n.ha.s  an  infinite  number  of  solutions. 00 you  say  that  this 
is  true  for  any  kernel  and  for  any  form  of  the  given  function, 
whether  it  is  continuous  or  discreet? 

Twomey:  One  should,  perhaps,  modify  that  to,  say,  physical 
kernels,  the  kernel  which  one is likely  to  encounter  in  a  physical 
measurement. It would  certainly not'be true  for  many  mathematical 
kernels,  such  as  delta  functions. 

Chahine: Not  necessarily.  Exponential  kernels  can  give  you  a 
unique  solution  sometimes. 

Twomey:  Well,  you  can  demonstrate  in  the  presence  of  finite 
accuracy--you  only  have  to  go  to  a  high  enough  frequency  and  you 
get  ambiguity. 

Chahine: The  nonuniqueness  can  be  due  to  noise  in  the  given 
function  (data)  or  in  the  kernel.  But  it  is  not  necessarily  an 
intrinsic  property  of  this  integral  equation. I would  like  to 
make  this  point  clear. 

Twomey:  Yes. I would  agree.  However, I would  comment  that I 
think  from  the  point  of  view  of  keeping  oneself  out  of  trouble, 
one  would  be  better  off  to  feel  that  there  are  an  infinity  of 
solutions  than  one  would  be  to  think  there  is  a  unique  solution. 

Chahine: Physically? 

Twomey:  Yes,  from  the  point  of  keeping  oneself  out  of  trouble. 
You  can't  get  into  trouble  mathematically. 

King:  Don't  you  think  that  part  of  the  problem  of  oversell  is 
related  to  formatting?  Inversion  efforts,  thus  far,  have  been 
directed  toward  mimicking  the  infinitely  resolved  temperature  pro- 
file  given  by  the  radiosonde.  And  this,  of  course,  the  inversion 
is  incapable  of  doing  in  principle.  Isn't it preferable  to  format 
the  information  in  terms of, say,  the  six  parameters  that  one  could 
infer  from  six  radiance  observations?  These  six  gross  atmospheric 
structure  parameters  would,  perhaps,  be  of  more  use  to  numerical 
weather  predictors  anyway,  since  their  algorithms  are  not  really 
sensitive  to  the  kind of detail  provided  by  the  radiosonde. 

Twomey:  I agree 100 percent,  Jean,  yes. I think  we  should  even 
go  a  step  further  than  this  because (I think I said  it  in  the 
written  version of  this  paper), I don't  think  any  of us really 
care  what  the  temperature  is 200 nillibars  above  Einewtok or 
somewhere  like  that. It  is only  data  that is going  into  a 
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circulation  model  or  a  prediction  model  and so forth.  The  first 
thing  those  people  are  going  to  do  is  try  to  apply  some  of  their 
own numerical  processes  to  that.  I  mean,  for  example,  if  you  feed 
them  a  superadiabatic  lapse  rate,  they  are  going  to  make  a  con- 
vective  adjustment  to  it. So the  first  thing  they  are  going  to  do 
with  a  nice  temperature  profile  which  you  have  at  great  trouble 
and  expense  fashioned;  they  are  going  to  change  it. So I think  you 
should  look  at  that  and  incorporate  that  and  see  what  is  best  for 
'them.  It  may  be  that  some  of  the  things  inversion  people  are 
sweating  to  try to put  into  their  profilesare  not  actually  needed 
by  the  people  who  are  going  to  use  those  profiles.  I  think  it  is 
also  up  to  the  people  who  are  going  to  use  those  profiles  to  state 
what  they  want,  not  the  way  they  have  been  stating  it. I think 
when  Dave  Wark  and I talked  to  people  some  years  ago,  they  would 
say,  oh,  we  want  a  quarter  of  degree;  we  want  at  least  as  good  as 
the  radiosonde;  we  want  better  than  the  radiosonde.  But  they  have 
a  grid  in  which  the  whole  atmosphere is in  about 160 km (100 mi) 
boxes. So they  are  only  putting  themselves  on  if  they  say  they 
want  radiosondes  every 100 meters  and  with  accuracy  of 0.3048 (I ft) 
resolution,  because  they  are  not  going  to  be  able  to  handle  it. 

Kaplan:  Well,  if  we  get  a  superadiabatic  lapse  rate,we  better  not 
feed  it  to  them  to  make  the  convective  adjustment,  because  we  are 
supposed  to  be  sounding  the  atmosphere.  And  we  better  do  the 
adjustment  because  we  know  how  to  do  it  better  than  they  do.  And 
it  isn't  the  convective  adjustment  that  is  required.  There  are 
real  needs  and  I  think  we  have  to  try  to  answer  those  needs.  And 
I think  probably  what  is  necessary  is  to  see  what  it  is  that  really 
is  wanted  and  probably  what  is  wanted  in  numerical  weather  pre- 
diction  is  mean  temperatures  between  constant  pressure  levels or 
constant  height  levels.  And,  I  think  we  ought  to  see  whether  that 
can  be  produced  and  the  solutions  given  in  those  forms.  And  if  it 
can't,  there  should  be  a  negotiation  going  back  and  forth  and  trade- 
offs  between  the  people  doing  the  soundings  and  the  users,  because 
the  soundings  are  not  being  done  for  its own sake.  I  mean,  some 
of  us  may  like  the  idea  of  the  game,  but  the  real  purpose  is  being 
able  to  improve  the  weather  forecast. 

Goldrnan: I  was  wondering  if  you  could  expand  your  opinion  about 
the  accuracy  of  the  constraint  against  no  constraint  at  all?  You 
have  shown  in  your  example  that  small  error  in  the  constraint  can 
give  much  worse  inversion.  And I was  wondering  if  you  could 
expand  a  little  bit  on  this  by  some  actual  examples? 

Twomey: Well,  no,  I  can't.  I  have  that  example  there,  but  one 
could  go  on  and  on, I mean,  calculate  various  examples.  I  think 
it  is  fairly  obvious  what  is  going  on.  If  there  are  real  con- 
straints,  which  there  are  in  many  physical  problems,  of  course, 
especially  at  the  endpoints  of  your  interval,  there  is  likely  to 
be  some  kind  of  physical  or  essential  constraint  there  quite 
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outside  your  inversion  problem. If it  is of that  nature  and  you 
can  state  accurately  what  it is, you  can  only  benefit  by  putting 
it  in.  But  just  exactly  how  much  error  you  need  to  be  in  that 
constraint  before  it  is  doing  more  harm  than  good,  that  would 
obvious.ly  depend  on  your  particular  problem.  You  know  the  pre- 
cise  numbers  that  you  are  working,on.  It is a simple  thing  to 
test,  obviously. 
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GENERALIZATION  OF THE RELAXATION  METHOD  FOR 

THE  INVERSE  SOLUTION  OF  NONLINEAR  AND 

LINEAR  TRANSFER  EQUATIONS 

Moustafa T. Chahine 
Jet Propulsion Laboratory 

California  Insti tute  of  Technology 

A mapping transformation i s  derived for  the  inverse 
solution of nonlinear and linear  integral  equations of 
the  types encountered i n  remote  sounding s tudies .  The 
method i s  applied to   the  solut ion of spec i f ic  problems 
for  the  determination of the thermal and composition 
structure of planetary atmospheres  from a knowledge o f  
their  upwelling  radiance. 

I. INTRODUCTION 

The  problem  of  determining  an  unknown  function  g(z)  from  the 

integral  equation 

given  the  function I(v) and  the  integral  operator N , has  arisen 
repeatedly in  problems  of  radiative  transfer  as  in  Ref. 1 and  in 

transport  theory  as  in  Ref. 2. The  mathematical  problem  here  is 

a  difficult  one  and,  in  fact,  may  not  always  have  a  solution  for 

an  arbitrary  function I(v). The  difficulties  are  compounded  by 

the  facts  that I(v) is  obtained  in  general  from  measurements  con- 

taminated  with  noise  and  that  the  integral  operator  itself  is  an 

approximation  to  a  real  physical  process. 

In  this  paper,  we  treat  a  speciiic  class  of  linear  and  non- 

linear  integral  equations  in  which the  kernel h a s  the important 

67 



p r o p e r t y  o f  r e a c h i n g  i t s  maximum peak a t  d i f ferent  v a l u e s  of z for 

different v a l u e s  o f  v. This  mathematical  property  is  very  common 

in  transfer  and  transport  problems  where  the  dominant  physical 

process  takes  place  within  a  narrow  segment  of  the  range  of  inte- 

grat  ion. 

In  the  following  section,  we  will  develop  a  relaxation  method 

of  solution  based  on  the  principle  of  .mapping  transformations  to 

recover 

and  study  the  stability  and  accuracy  of  the  solutions  in  the 

presence  of  noise  in  the  given  data.  The  remaining  sections  of 

this  paper  will  be  devoted  to  the  study of the  inverse  problems 

for  the  determination of atmospheric  temperature  and  composition 

profiles  from  remote  sounding  radiance  data. 

11.  MATHEMATICAL  FORMULATION 

The  formulation  of  remote  sounding  problems  in  radiative 

transfer  leads  often  to  nonlinear  integral  equations of the form 

In  some  cases,  however,  the  resulting  integral  equations  are 

linear  in g ( z )  and  of  the  form 

In Eqs. (1) and (2) C(v,zo)  and  K(v,z)  describe  specific 

radiative  transfer  processes  such  as  absorption,  emissionlor  scat- 

tering  in  the  atmosphere.  In  many  problems  of  remote  sounding, 

this  kernal  K(v,z)  reaches  its  maximum  peak  at  different  values  of 

z for  different  values  of v. I(v)  is  a  given  function,  usually 
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measured  at  a  discrete  number  of  observations ? (v . ) , and  g (z) is 
the  distribution  of  an  atmospheric  parameter  to  be  determined. 

Thus,  the  inverse  solution  here  reduces  to  finding  a  function  g(z) 

7 

such  that  when  it  is  substituted  into  Eqs. (1) or (2) , 
values  of I(v) equal  to  the  corresponding  measurements 
with 

it  will  yield 

T ( V j )  - I(V.) = 0 
7 

for  all  the  given  values  of v 
j '  

In  remote  sounding  problems 

physical  existence  of  a  solution 

But  from  a  mathematical  point  of 

there  is  usually  no  doubt  of  the 

or  perhaps  even  of  its  uniqueness. 

view,  the  problems  of  demon- 

strating  existence  and  ensuring  uniqueness  of  g(z)  are  of  great 

importance  and  are  directly  related  to  the  various  simplifying 

physical  and  mathematical  assumptions  made  in  the  derivation  of 

the  integral  equation  and  depend  also  on  the  information  content 

of  the  measured  data.  Therefore,  a  general  treatment  of  the  prob- 

lems  of  existence  anduniqueness  for Eqs. (1)  and (2) is  difficult 

unless  it  is  approached  from  the  narrow  point  of  view  of  the 

dependence  of  the  solution  on  the  initial  guess  and  the  inter- 

polation  (or  quadrative)  method  used.  However,  accurate  demon- 

stration  of  existence  and  uniqueness  may  be  carried  out,  in 

principle,  for  some  problems,  depending  on  the  form  of  the  kernel 

and  the  degree  of  discretization  of  the  function f ( v . 1 .  
7 

A. General  Method  of  Solution 

The  right-hand  side  of  Eqs. (1) and (2) may  be  viewed  as  an 

integral  operation  transforming  variations  of  g  with  respect  to 

z into  variations  of  I  with  respect  to v as 

To  obtain  g(z)  we  need,  therefore,  to  perform  an  inverse  trans- 

formation  from  the  (1,v)  plane  into  the ( g , z )  plane  with 
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We  can  accomplish  this  by  applying a mapping  transformation  which 

maps  points on the  v-axis  into  corresponding  points  on  the  z-axis 

and  similarly  maps  points  on  the  I-axis  into  points  on  the  g-axis. 

1. The v - z Mapping  Transformation 

To map  the  v-axis  into  the  z-axis,  let 2 .  be a point  between 
3 

z and  where K ( u  ,z)' reaches  its  maximum  value  or 
0 j 

From  Eqs. (1) or (2) we  note  that  variation  in  g(z)  around z 

should  affect  the  values  of I(v.) very  strongly  while  variation  in 

g (z) at  values  of z << z and z >> z should  not  affect I (v . ) by 
the  same  magnitude.  We  propose,  therefore, to use  this  property 

to  map  this  point v into z on  the  z-axis.  In  general,  since 

K(uj,z)  reaches  its  maximum  values  at  different  values of z 

j = 1, 2, ... J for  different  values  of v j = 1, 2, ... J. We 

can  use Eq. (5) to  derive a relationship  between u and z 

j 

3 

j j 3 

j j 

j' 

j' 

and  map  different  points  on  the  v-axis  into  different  points on 

the  z-axis. 

2. The I - g Relaxation  Transformation 

Mapping  of  the  I-axis  into  the  g-axis  is  much  more  difficult 

and  needs to be  carried  out  by  iteration.  We  apply  the  mean  value 

theorem (or the  method of steepest  descent)  to  Eq. (1) and  derive 

a relaxation  equation  of the form 

J J 
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Equation (6) is  written  in an iterative  form  where  g(n) (z . )  is  the 

nth  guess of the  solution. I (n) (v  .) is  the  corresponding  value 

computed  according  to  Eq. (1) . i (v . ) is  given  and g 
is  the  resulting-(n + 1) guess.  Similarly,  the  relaxation  equa- 
tion  corresponding  to  Eq. (2) is  of  the  form 

3 

7 . (n + 1) 
3 

(Zj) 

Details of this  derivation  are  given  by  the  author  in  Refs. 3 and 

4. Equations  (6a,b)  transform  changes  in  the  ratio i (v . )/I (n) (v . I  
at  different  points  on  the  v-axis  into  changes  in  g(n) (z . ) at 

3 3 

3 
specific  points  along  the  z-axis.  The  mechanism  of  this  trans- 

formation  is  iterative  in  which  g(n) (z . ) is  modified  at  every  step 
n to  yield a new  value g (z . I  - (n + 1) I1 

7 
It  is  possible  to  generalize E q s .  (6a,b)  formally  and  write 

the  relaxation  transformation  as 

where c1 (n) are  scaling  factors  computed  directly  from E q s .  (6a) 

or  (6b) . j 

(It  is  sometimes  necessary  to  use a weighted form of  the 

scaling  factors,  as  defined  in E q .  (lo), in  which  several  values 

of i ( V  . ) , j = j ' , . . . j" , are  used  to  derive  each  scaling  factor 
E (n). This  approach  will  be  discussed  later  in  this  section. ) 

3 .  I t e r a t i v e   S t e p s  of the Method of S o l u t i o n  

7 

j 

Assume  that a.set of measurements ? ( v , )  is  given  for j = 1, 
7 

2, ... J and  use Eq.  (5) to  find  the  corresponding  values  of 

z j = 1, 2, ... J. 
j' 

(a)  Make  an  initial  guess  (n = 0) for g (n) (2) . 
(b)  Substitute  g(n) (z) into E q .  (1) [or E q .  (2)] and  evalu- 

ate I (n) (v . j = 1, 2, . . . J using  an  appropriate  interpolation 
3 
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(quadrature)  formula. 

(c)  Check  the  residuals, 

If  all .(n)(v.) +- 0, then  g(n)(z.)  is  a.solution.  If 
7 3 

not,  then  obtain a new  guess, 

(dl GO to  step (b) and  repeat  until  step  (c) is satisfied. 

B. Analytical  Example 

In  order  to  illustrate  the  relaxation  method of solution,  we 

suggest  the  following  analytical  example. 

Let 

and  given 

- (zo - VI2 
I(v) = e 

where z is a constant,  find g ( z )  by  the  method of relaxation. 

(The  answer  is a delta  function, g ( z )  = B(zo - z), which  we  will 
try  to  determine  next.) 

0 

1. The v-z Mapping  Transformation 

The  kernel  e- (z - ') has a maximum  at v = z and  thus  the 

corresponding  mapping  transformation  from  the  v-axis  to  the  z-axis 

is v = z.  

2. The I - g Relaxation  Transformation 

The  corresponding  relaxation  equation  according  to Eq. (6b) 

is 
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3. Iterative Solution 

I n   t h i s   i d e a l   a n a l y t i c a l  example w e  do not   need  to   specify an 

interpolation  formula  because w e  are   deal ing  with a continuous 

funct ion i (v )  which maps the   en t i r e   v -ax i s   i n to   t he   en t i r e   z - ax i s .  

To start t h e   i t e r a t i o n  ( n = 0 ) l e t   u s  assume a constant 

v a l u e   f o r   t h e   i n i t i a l   g u e s s ;   f o r  example 

g(O)  ( z )  = b 

and apply  the mapping t ransformations  to   generate   the  fol lowing 

i t e r a t i v e   s o l u t i o n s .  We g e t  

where t h e   c o e f f i c i e n t s  C are   obtained from the  following  recur- 

rence  re laxat ion 
n 

To show tha t   the   recovered   so lu t ion  C J ( ~ )  ( z )  i s  a d e l t a  

funct ion  centered a t  z w e  can easily prove   tha t ,as  n -f m ,  
0' 
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where  d is the  width of the  function g(n) (2) at  half  peak  as n 
shown  in  Fig. 1. 

F i g .  1 .  The a n a l y t i c a l   i l l u s t r a t i o n .  

C. Stability  and  Convergence  of  Solutions 

The  previous  analytical  example  offers  an  ideal  case  in  which 

the  entire  v-axis  maps  into  the  entire  z-axis,  the  number  of  iter- 

ations  that  can  be  carried  out is infinite,and  the  given  function 

i (v) is  exact. In remote  sensing  problems,  however,  we  are  given 
small  (and  sometimes  incomplete)  data  sets I (v . I  , j = 1, 2 . . . J 
where  the  peaks of the  kernels  are  not  uniformly  distributed  and 

where  both I (v . ) and K (v z )  are  known  with  a  certain  degree  of 

uncertainty.  Under  these  conditions,  it  becomes  sometimes  neces- 

sary  to  (i)  supplement  the  data  with a p r i o r i  information  about 

the  expected  result,  (ii) use weighted  sealing  factors  instead 

of a in  order  to  minimize  the  effects  of  large  measurement  noise 

on  the  accuracy  and  stability  of  solutions,  and  (iii)  establish 

7 

3 j '  
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numerical  criteria  for  determining  the  optimum  number of iterations 

required. We will  examine  these  aspects  of  the  problem  in  the 

remaining  part of this  section. 

D. 

and 

the 

the 

Properties  of  the  Residuals 

Application  of  the  relaxation  method  to  a  variety  of  linear 

nonlinear  problems  has  shown  that  in  the  absence  of  noise  in 

given  data,  the  computed  values  of  the  function I(v.) approach 

measured  data I(V.) after  a  small  number of iterations.  Their 
3 

3 
residual  difference  R(v.)  tends  asymptotically  to  zero  (or  to  the 

value  of  the  quadrature  errors)in  a  root-mean-square  (rms)  sense  as 
3 

But,  if  we  add E noise  to  the  data  as 
j 

I ' ( V . 1  = I ( U . 1  + E 
3 7 j 

we  observe,.that  the  residuals,  in  this  case,  decrease  first  rapidly 

and  then  approach  an  asymptotic  value  equal  to  the  noise  in  the 

data  in an nns sense  with 

(This  property  will  be  discussed  in  more  detail  in  the  following 

section  and  will  be  illustrated  in  Fig. 6.) 

Thus,  in  the  presence  of  random  errors  in  measurements,  the 

r.esiduals  do  not  give  a  false  iridication  of  convergence  because 

they  will  not  tend  toward  zero.  The  residuals  first  decrease  and 

then  approach  an  asymptotic  value  of  the  same  order  of  magnitude 

as  the  errors  in  measurements.  This  property  is  due  to  the  partial 

overlapping  of  the  kernels  and  suggests  that  the  iterative  process 

should  be  terminated  when  R(n)  approaches  its  asymptotic  value. 
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The e f f e c t  of cont inued   i t e ra t ions  beyond t h i s  point   does   not  

always  increase  the amount of information  extracted from the   da t a ,  

and i n  the presence  of  large  noise  levels  in  the  measurements 

might lead t o  o s c i l l a t i o n s   i n  the  recovered  solutions.  To prevent 

such   o sc i l l a t ions  from happening,i t  i s  advisable  t o  a p p l y ,   a f t e r  

a f e w  i t e r a t i o n s ,   s a y  n > 3 ,  ce r t a in   we igh t s   t o   t he   s ca l ing  

coe f f i c i en t s  a?) i n  t h e  form of 
3 

and  use G!n) t o   gene ra t e   t he  new i t e r a t i o n s  as 
3 

The use  of w i l l  slow down the  rate of  convergence  considerably 

bu t  w i l l  tend t o  d iminish   the   e f fec ts   o f  random no i se   i n   t he   da t a  

on the   i t e r a t ive   so lu t ion .  

j 

Differen t  forms of W.(v ) can be adopted,  such as taking 
3 k  

W.(vk) equal t o  the   f r ac t iona l   va lue  of the   ke rne l s  K(v ,  z )  a t  

z f o r  vl, v2 ... v I n  t h i s  case,we write 
3 

j j' 

where K ( V  z ) i s  the  m a x i m u m  value  of   the  kernel .   Addi t ional  

d e t a i l s  on the  convergence properties of t h e  solut ion  can be found 

i n  Refs. 5, 6 ,  and 7. 

k' k 

Ul t imate ly ,   the   i t e ra t ion  process should  be  terminated when 

the  rate of convergence of t h e   s o l u t i o n   w i t h   r e s p e c t   t o   i t s e l f ,  

defined as 

approaches a cer ta in   prescr ibed  value.  
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E. Interpolation  Methods 

The  interpolation  aspects  of  the  solution  are  not  trivial, 

particularly  in  cases  where  the  number  of  measured  data  points  is 

deficient.  The  recovered  solution  is a function  of  the  number  of 

useful  observations  available  and  of  the  interpolation  method  used. 

. The  selection  of a suitable  interpolation  formula  is  one  of  the 

subjective  aspects  of  this  problem.  While  it  is  always  possible 

to  apply  many  different  interpolation  methods,  it  is  obvious  that 

from a finite  set  of J measurements,  it is impossible  to  recover 

more  than J i n d e p e n d e n t  parameters. 

Application  of  the  relaxation  method  of  solution  to a variety 

of  problems  has  shown  that  the  resulting  solutions  are  independent 

of  the  initial  guess  but  depend  on  the  interpolation  formula 

selected  to  determine  the  solution  g(z)  at  the  intermediate  values 

between  z.(j = 1, 2, ... J). Linear  interpolation  methods  are 
recommended  in  the  absence  of  any  information  about  the  expected 

solutions;  however,  other  interpolation  methods  can  be  applied 

when  needed. 

7 

In  cases  when a p r i o r i  knowledge  of  the  shape  of  the  expected 

solution  is  given, a perturbation  approach  is  recommended  to  make 

use  of  the  available  information.  This  can  be  accomplished  in  the 

iteration  process  by  including  in  the  initial  guess  all  available 

information  about  the  shape  of  the  expected  solution. To preserve 

this  shape  in  subsequent  iterations,  we  perform  the  interpolation 

on  the  scaling  factors  a(n) ( z  . ) and  generate  scaling  factors  at 
all  intermediate  values  of z, a (n) ( z )  . The  complete  interpolated int 
solution  is  then  obtained  at  all  values of z as 

3 

It  is  obvious  that  the  same  interpolation  procedure  can  be  per- 

formed  also  when ; !"' is  used.  In  this  process,  the  final  answer 
3 

77 

" 



is  made  to  depend  on  the  initial  guess  by  preserving  the -form of 

the  input  function  g(O) (2) in  all  the  steps of the  iterative 

solution. 

In  general,  however,  reliance  on a - p r i o r i  information  about 

the  expected  solution  should  not  be  considered  unless  the  number 

of  available  measurements  is  insufficient  and  unless  the  infor- 

mation  content  of  measurable  data  is  incapable  of  recovering  cer-. 

tain  essential  features of the  solution,  such  as  the  location  of 

the  tropopause.  However,  the  fundamental  mathematical  condition 

that  from  a  set  of J measurements  it  is  possible  to  recover  only 

J' independent  parameters  such  that J' I J remains  the  rule. 

In  the  following  sections,  we  will  apply  the  relaxation 

method  to  two  remote  sounding  problems  and  study  the  properties  of 

the  solution and quality  of  results  specifically  for  the  deter- 

mination  of  the  thermal  and  composition  structure  of  planetary 

atmospheres. 

111.  THE  INVERSE  PROBLEM  FOR  TEMPERATURE  PROFILES 

In  the  problem  of  remote  sounding  of  atmospheric  temperature 

profiles,  the  following  equation  occurs 

I(V) = B[v,T(zo)]~(v,  z0) + B[V,T(z)]K(v,  z)dz I: 0 

Equation (15) is  the  integral  form  of  the  radiative  transfer 

equation  for  a  plane  parallel  homogeneous  and  nonscattering  atmos- 

phere  in  local  thermodynamic  equilibrium.  I(v)  is  the  outgoing 

radiance  measured  at  a  vertical  distance  from  the  surface z of 

a  planet  within  a  narrow  solid  angle  around  the  local  vertical 

axis,  z.  B  is  the  Planck  function  explicitly  given  as 

0 

where  a  and  b  are  two  given  constants. T (v, z )  is  the 



transmittance  of  a  column  of  absorbers  between  levels  and z and 

is  defined  for  monochromatic  observations  as 

where  k(v, z )  is the  absorption  coefficient  at v due  to  all  lines, 
and  can  be  represented  for  a  Lorentz  profile  by  the  equation 

where S, is the  strength, a: is  the  half  width  of  the  line  and vi 
The  density  pro- 

I I 

is  the  frequency at peak  intensity  of  the  line. 

absorbing  gas s is  given  by p (z' ) . 
. . . ) is  defined  as 

S 

The  pressure  p(z)  is  related  to z through  the k 

The  kernel 

lydrostatic  equation 

where p(z) is  the  density  profile  of  the  entire  atmosphere. 

In  practical  observations,  measurements  of  I(v)  are  made  at 

a  discrete  number  of  frequencies v centered  within a finite  band 

Av with 
j 

where $ ( v  v) is  the  instrument  function. 
j '  

From a practical  point  of  view,  it  is  advisable  (but  not 

necessary  for  the  present  method) to substitute  Eq. (15) into 

Eq. (21) and  define  the  transmittance T ( V  z) in  the  interval Av 
as 

j' 

V' 
-c (Vj I z )  = $(vj,  v)-c(vj,  z)dv (22) 

I' 
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Since  B(V, T) is a smooth  function  in  the  interval Av, we  take 

In  the  rest  of  this  paper,  we  will  deal  with  Eq. (23) whether  we 

refer  to  the  measured  radiance  as f (v . ) or  as I (v) . 
7 

From a given  set  of  values  of  I(v.1 , j = 1 , 2 . . . J, we  want 
7 

to  determine  the  temperature  profile T (z . ) , assuming  that p (z) , 
T(V z) and  K(v z) are  known.  In  this  problem,  the  selection 

of  the  set v and  the  determination  of  T(z.1  are  strongly  related 

and  form  the  basis  for  the  method  of  inverse  solution  of Eq. (23). 

7 S 

j' j '  

j 7 

By  selecting a set  of  frequencies v with  varying  degrees  of 
j 

atmospheric  attenuation  such  that T(V , zo) 2 T(Vj, z ) ,  ... 1 
~ ( v  z) , we  can  generate a set  of  kernels K(v z) such  that  for 
each  value  of v the  kernel  possesses a maximum  at a different 

value  of z as  shown  in  the  illustration  (Fig. 2) . 
j' j '  

j 

j 

A. The  Mapping  Transformation 

Equation (23) is a nonlinear  integral  equation  with 

limits  which  may  be  viewed as a nonlinear  transformation 

T(z) to I(v) as  in  Eq. (3) , namely, 

i ( v )  = N T(Z) 

fixed 

from 

To  obtain  T(z),  we  need  to  perform  an  inverse  transformation  as 

in  Eq.  (4) , namely 

T(z) = N-' i (VI 

Figure 2 strongly  suggests a mapping  transformation  from  the 

v axis  to  the z axis.  Since  the  kernels  K(v z) are  strongly 
decaying  functions,  variations  of T(z) around z will  affect  the 

j' 
i 
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F i g .  2. The 4.3 pm CO b a n d   w e i g h t i n g   f u n c t i o n s  for atmos- 2 
p h e r i c   t e m p e r a t u r e   s o u n d i n g   c o r r e s p o n d i n g  t o  z = w. 

values of I ( V . 1  very strongly, while variations of T(z)  at values 

Of z << z and z >> z do not affect I(v.) appreciably.  Hence, 

we Propose to map U into z where z corresponds to the peak 

7 

j j 7 

j j j 
Value  Of the kernel K ( V  2). Mathematically, we derive the trans- 

j' 
formation 

u = u ( z . 1  
j 3 
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from the so lu t ion  of the  equat ion 

a K ( v  2) 
j' 
az = o (j = 1 , ' 2 ,  3 ... J )  

Equation  (25) can be used  immediately t o  map t h e  set  of J po in t s  

on  the v axis i n t o  a set of J po in t s  on the  z axis. 

But i n   o r d e r  t o  map the  I a x i s   i n t o   t h e  T a x i s ,  w e  need a 

r e l a t ionsh ip  between I ( V  . and  T(z . - The author  (Refs. 3 and 4 )  has 

appl ied   the  mean value  theorem t o  Eq. (9) and  derived the following 

relaxat ion  equat ion 

3 3 

Equation  (26) relates changes i n  the outgoing  radiance for  one f r e -  

quency v w i t h  changes in   the   P lanck   func t ion  a t  one l e v e l  z 

as i l l u s t r a t e d   i n   F i g .  2. Equation  (26) i s  expres sed   i n . an   i t e r a -  

t i v e  form usefu l   for   our   purposes  where T (2) and T 

are t w o  temperature profiles a t  d i f f e r e n t   o r d e r s  n of   an   i t e ra t ive  

solut ion.  I (n) ( v  . ) i-s the   radiance computed  from Eq.  (23)   for  a 

given T ( n )  ( z ) ,  and I (v). i s  the  measured  radiance. For addi t iona l  

de t a i l s   r ega rd ing   t he   de r iva t ion   o f  Eq. (26 ) ,  see Eqs. ( 6 ) t o  

j j' 

(n)  (n + I) ( z )  

3 -  

(9)  i n  R e f .  4. We should  note  here that  Eq. (26)  can  be  derived 

a l s o  by applying  the method of s teepes t   descent  as ind ica ted   in  

Ref. 2 by the  author .  

B. The I t e r a t i v e  Method of  Solution 

We proceed t o  solve Eq. (23)   for  the determination  of  T(z) by 

i t e r a t i o n  as follows: 

Assume a set of measured  radiances, ? ( v . )  is  given  for  j = 1, 
3 

2, ... J. 
1. Make an i n i t i a l  guess (n = 0) for  T ( n )  ( z )  . 
2. Subs t i t u t e  ( z )  i n t o  Eq. ( 2 3 )  and  evaluate  the 
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I 

corresponding I (n) ( v  .) j = 1, 2 , . . . J using  in  this  case  a  linear 
interpolation  formula. 

7 

3 .  Check  the  residuals 

for  each  frequency  and  in  an  rms  sense.  If  R(n)  is  small,  then 

.(n) (2) is  a  solution.  If  a(n)is  not  small,  go  to  step 4. 

4. Obtain  a  new  guess 

where  the  scaling  factors  are  obtained  from Eqs. (16) and  (26)  as 

A second  criterion  to  establish  convergence of the  iterative 

solution  was  applied  here.  The  criterion  is  obtained  by  observing 

the  rate of convergence  of  the  temperature  profile  with  respect  to 

itself  as 

The  iteration  is  terminated  when <AT (n)> is  less  than  some  pre- 

scribed  value,  say 0.1 K. 
av 

5. Go to  step 2 and  repeat  until  step 3 or Eq. (29) is 

satisfied. 

C.  Accuracy  of  the  Results 

The  relaxation  method  of  solution  has  been  applied  to  invert 

synthetic  radiance  data  generated  by  a  computer  from  a  set  of 

model  temperature  profiles  in  an  atmosphere  having  a  constant  CO 

mixing  ratio  of  462 x 10 by  mass.  The  spectral  interval  selected 
-6 2 

83 

L 



t o  i l l u s t r a t e  this study  corresponds t o  the se t  of 4.3-1-lm f r e -  

quencies shown i n   F i g .  2. 

The. instrumental  s l i t  func t ion   $(v  v )  is taken t o  be 
j' 

t r i angu la r ,  symmetrical with respect t o  v.,and  having a base  width 

equal t o  60 c m  . A t yp ica l  example of the  accuracy of the  recon- 

s t ructed  temperature   values  i s  shown i n   F i g .  3 .  

-1 3 

1. Uniqueness of Solution 

The typica l   resu l t s   o f   F ig .  3 show t w o  i n t e r e s t i n g  properties 

which c a l l   f o r  comment. First of a l l ,  examination  of  the solu- 

t ions tobta ined  by using as an i n i t i a l   g u e s s  any  isothermal pro- 

f i l e  o r   t h e  U.S. Standard  Atmosphere  temperature profiles, shows 

t h a t  a l l  the  reconstructed  temperature  values  reproduced  very well 

t h e   o r i g i n a l   p r o f i l e   i n  less than  seven  i terat ions  and the average 

absolu te  error in   the   recons t ruc ted   t empera ture ,  <AT>aV, is  less 

than  0.1 K,  i r respec t ive   o f   the   in i t ia l   guess .   Secondly ,  when a 

small per turba t ion  of the   o rder  of 1 K w a s  superimposed  on the  

exact  profile and t h e   r e s u l t i n g  profile used as an i n i t i a l  guess, 

the  solution  converged with similar r ap id i ty .  The value of 

<AT> decreased  from 1 K t o  0.074 K i n  one  i teration  only.   These 

r e s u l t s  show c l e a r l y   t h a t   t h e   f i n a l   a n s w e r s  do  not  depend on the  

i n i t i a l   g u e s s  and that  convergence i s  guaranteed   for   l a rge ,  as 

w e l l  as small, per turbat ion  solut ions.  

av 

We have also observed   tha t   the   res idua ls  R ( n )  ( v  . )  of the 

individual  sounding  frequencies  do  not  converge  simultaneously a t  

t he  same order  n of i t e r a t i o n .  The r eason   fo r  t h i s  is  because 

the  absorption  properties  of  the  atmosphere  do  not  usually  allow 

f o r ,   o r   l e a d  to ,  the   se lec t ion   of  a uniform set of kernels  

I 

K ( V j  z )  w i t h  equal  half-widths  and  equally  spaced peaks z . 
j 

From a numerical   point   of   view,   the  resul t ing  system  of   integral  

equations is  poorly  discret ized,   and  in   case  the  weight ing 

funct ions are also broad, it becomes d i f f i c u l t  t o  resolve small 

d e t a i l s   i n   t h e   p r o f i l e  even in   t hose   r eg ions  where the  
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p o l a t i o n s .  ( F r o m  R e f .  4 . )  
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corresponding  peaks  are  narrowly  spaced.  We  note  here  that,  in 

general,  the  resolution of small  detail  in  only  one  region  of  the 

profile, to the  exclusion  of  the  rest,  is  not  always  possible 

regardless of the  accuracy of the  measured  data. 

It  is  possible,  however,  to  use  more  than  one  measurement  to 

recover  the  solution  at  one  point z This  can  be  done  by  applying 

weighted  scaling  factors  as  in  Eq. (11) 
j- 

where  each a is  obtained  as  a  weighted  average  of  more  than  one 

sounding  frequency  in  a  manner  similar  to  Eq. (10). 

- (n) 
i 

2. Stability of Solutions 

The  present  relaxation  method  of  solution  is  a  discrete 

numerical  process  in  which  convergence  is  judged  according  to  the 

extent  to  which  this  algorithm  suppresses  the  effects  of  quadrature, 

random  and  systematic  errors  on  the  final  temperature  profiles. 

a. Quadrature  errors. The  effect  of  quadrature  errors  on 

the  final  answer  depends  on  two  sources:  one of these  is  compu- 

tational,  resulting  from  the  integrations  of  Eq. ( 2 3 )  for  the 

evaluation  of I (n) ( v  . )  ; the  other  is  due  to  interpolations  resul- 

ting  from  the  inability  of  a  discrete  set of points  to  fit  the 

whole  temperature  profile  exactly  even  for  perfect  data.  In  the 

results  typified  by  Fig. 3 ,  a  modified  Simpson's  rule  was  used  to 

evaluate  Eq. ( 2 3 )  with  a  first-order  interpolation  formula  for  the 

intermediate  values  of  temperature.  The  temperature  profile  in 

Fig. 3 is  relatively  smooth,  and  the  use  of  a  different  inter- 

polation  formula  or  a  larger  number  of  sounding  frequencies  for 

such  profiles  is  not  warranted. 

3 

b. Random errors. The  question  of  the  propagation  of  random 

errors  is  a  critical  one  and  depends  on  a  number  of  factors, 

including  the  spectral  region  in  which  the  observations  are  made. 
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In  examining  the  tolerance of this  algorithm  to  random  errors,  the 

effect of their  distribution,  their  maximum  values,  and  their rms 

values  will  be  taken  into  consideration. 

To  obtain  a  feeling  for  the  stability  of  the  resolution, 

errors  were  produced  by  a  uniform  random  error  generator  sub- 

routine;  they  were  then  added  to  the  exact  synthetic  data,  and 

inversions  were  performed  for  a  variety  of  cases  as  in  the  previous 

section.  In  the  results  shown  in  Fig. 4 ,  a  set  of 10 random  errors 

having a maximum  value  of 9.3% and  a rms value  of 4.8% was  super- 

imposed  on  the  exact  synthetic  data  of  Fig. 1. The  reconstructed 

temperature  values  show  an  excellent  tolerance  to  random  errors. 

The  average  absolute  error  <AT>  in  the  temperature  here  is  1.5 K. av 

Since  the  present  inversion  scheme  is  nonlinear,  the  effects 

of  random  errors  must  be  examined  for  each  case  separately.  The 

results  of  some  30  cases  studied  are  summarized  in  Fig.  5.  They 

show  that,  in  observations  made  in  the4'.3-~1m  region,  a  temperature 

accuracy  <AT>  of 1 K can  be  expected  with  a 2% rms random  error 

in  observations,  and  an  accuracy of2 to 3Kcanbe expected  with  a 

5 to 7% rms error  in  observations. 

av 

The  effects  of  random  errors  in  observations  vary  according 

to  the  frequency  and  can  be  estimated  in  principle  from  Eq. (16). 

We  consider  a  hypothetical  set  of  sounding  frequencies  for  which 

the  weighting  functions  form  a  perfect  set of delta  functions. 

The  dependence  of  errors  in  the  temperature  solution  on  random 

errors  can  be  obtained  by  differentiation  of  the  blackbody  func- 

tion  with  respect  to  temperature  which  yields 
r 

Equation  (30)  shows  that  a  relative  error  AB/B  in  measuring  the 

blackbody  radiance  will  be  multiplied,  by  the  expression  between 

brackets,  when  the  radiance  is  inverted  to  temperature.  This  ideal 

multiplication  factor  is  a  function  of  frequency. A comparison  of 
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Fig. 5. Effect  of  random  noise  in  the  data  on  the  accuracy 

of  the  recovered  temperature profile. (From  Ref. 4.) 

this  factor  with  the  slope  of  the  least-squares-fit  line  in  Fig. 5 

turns  out  to  be  very  satisfactory. 

Perhaps  more  significant  is  the  effect  of  random  errors  in 

measurements  on  the  behavior  of  the  residuals  R(n).  In  the  case 

of  Fig. 3 for  zero  random  errors  in  observations,  we  recall  that 

the  solution  converged  after a small  number  of  iterations.  The 

variations  of  the  corresponding rms value  of  the  residuals, 

j 

< p  > with  respect  to  the  order  of  iteration,  is  shown  as  the 
rms ' 

lowest  curve  in  Fig. 6. By contrast,  the  uppermost  curve  corre- 

sponds  to  the  case  of  Fig. 4 with  an rms random  error  of 4.8%. 

A closer  examination  of  the  various  results  shown  in  Fig. 6 

reveals  that  the  residuals  tend  toward  different  asymptotic  values 
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according  to  the  values  of  the  corresponding random e r r o r s   i n  

observations. For zero random errors ,   the   asymptot ic   value is 

equal to   the   quadra ture   e r rors .  

Thus, i n  the  presence  of random e r r o r s   i n  measurements t he  

res idua ls  do not   g ive  a f a l se   i nd ica t ion  of  convergence;  they w i l l  

not  tend  toward  zero. The r e s i d u a l s   f i r s t   d e c r e a s e  and then 

approach  an  asymptotic  value  of  the same order  of  magnitude  as 

t h e   e r r o r s   i n  measurements. Th i s  property i s  the   r e su l t   o f   t he  

partial  (nonlinear)  dependence  of  several  sounding  frequencies  on 

temperature  variations a t  one  pressure  level,  and sugges ts   tha t  

the   i t e ra t ive   p rocess   should  be terminated when R ( n )  becomes equal 

t o   t he   va lue  of rms e r r o r s  i n  measurements. The e f f e c t  of  con- 

t i nued   i t e r a t ions  beyond th is   po in t   does   no t   increase   the  amount 

of information  extracted from the  radiance  observations;  it sim- 

ply   increases   the   ra te  of  accumulation  of  errors  in  the  recon- 

structed.temperature  values.  

The s o l i d   c i r c l e s  i n  Fig. 4 correspond to   the   t e rmina l   o rders  

o f   i t e r a t ion  a t  which the  average  absolute  error i n  the  recon- 

structed  temperature  values <AT> is  wi th in  20.1 K of the  mini -  

mum. The so l id   c i r c l e s   occu r  always i n  the  region of maximum 

curvature of t he   va r i a t ion  of R ( n )  w i t h  r e spec t   t o  n .  

av 

c .  Systematic errors. cer ta in   t ransmi t tance   e r rors  

r e su l t i ng  from  an approximate knowledge of the  composition and 

the   spec t r a l   p rope r t i e s  of the  atmosphere  are  systematic  errors.  

The e f f e c t  of t hese   e r ro r s  on the  behavior  of  the  residuals i s  

q u a l i t a t i v e l y  similar t o   t h e . e f f e c t  of random e r r o r s ;   t h a t  i s  t o  

say ,   the   l a rger   the   e r ror  i n  t ransmi t tance ,   the   l a rger   the   cor re-  

sponding  asymptotic  value  of-the  residuals.  And, inverse ly ,   the  

r e s idua l s   t end   t o   t he i r  minimum value when the   e r ro r s  i n  t rans-  

mi t tance   a re  minimum. We w i l l  show i n  the  fol lowing  sect ion t h a t  
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by investigating  the  consequences  of  adopting a c r i t e r i o n  which 

we sha l l   c a l l ’k in imiza t ion  of  the  residuals:  we can  develop  a 

s a t i s f a c t o r y  method for   the   de te rmina t ion  of other  meteorological 

parameters,   such  as  the  constant  mixing  ratio  of  absorbing  gases.  

The mapping t ransformation  appl ied  in   this   sect ion  can be 

adapted to   d i f f e ren t   da t a   r equ i r emen t s   a s  shown  by Conrath  (Ref. 

81, Smith (Ref. 9 ) ,  Shaw, e t   a l .  (Ref. lo), and Taylor  (Ref. 11). 

Figure 7 i s  an  example  taken  from  Ref. 10  and  shows a  comparison 

between the  temperature   prof i le   recovered from rea l   da ta   wi th  

colocated  radiosonde and rocketsonde  data. More r ecen t ly ,   t he  

technique has been applied by Jastrow and Halem (Ref. 1 2 )  t o  

i n t e rp re t   t he   i n f r a red   r ad iance   da t a  from the  15 pm sounding  on 

the  National  Oceanic and Atmospheric  Administration (NOAA) s a t e l -  

l i t e s   f o r  numerical  weather  prediction  purposes. 

I V .  DETERMINATION OF COMPOSITION PROFILES 

The dependence  of  the  radiative  transfer  equation on the  con- 

cent ra t ion  of  absorbing  gases p (z) appears i n  the  kernel   of   the  

equation  as shown i n  Eqs. (1’71, (19) ,  and (23). I f   t h e  mixing 

r a t i o   p r o f i l e  i s  a constant  q the  dependence  of K ( v ,  z )  on q, 

is simple and t h e   r e t r i e v a l  of  q  can  be  obtained by a minimiza- 

t ion  process .  However, i f   t h e  mixing r a t i o  is  a funct ion of z ,  

the  unknown p (z) w i l l  appear  as  a functional i n  t h e   i n t e g r a l  

equation, and t h e   r e t r i e v a l  of p (z) i n  t h i s  case becomes more 

d i f f i c u l t .  We w i l l  examine these  two cases  i n  t h i s   s e c t i o n .  

S 

SI 

S 

S 

S 

A. Case of the  Constant Mixing Ratio 

The property  of   the   res iduals   given i n  Eq. (9)  and Fig. 6 

has  been  used i n  Ref. 4 t o   d e r i v e  t h e  constant   mixing  ra t io  q  of 
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N U M B E R  OF I T E R A T I O N S  n 

F i g .  7 .  Variations of the r m s  residuaIs w i t h  respect  to  the 

number of i terat ions for di f ferent   no ise   l eve ls   in   the  radiance 

d a t a .  ( F r o m  Ref .  4 . )  

absorbing  gases,  such as the constant   mixing  ra t io  of  carbon 

d ioxide   in  the t e r r e s t r i a l  atmosphere. Here, an e r r o r   i n  the 

value of the mixing r a t i o  q0 used  in  computing  the  kernel  intro- 

duces  an  error  in K ( v  , p) which w i l l  prevent the r e s idua l s  from 

converging to   near   zero.  The r e s idua l s  w i l l  reach  an  absolute 

minimum value,   only when the   co r rec t   ke rne l  is  used, i.e., when- 

the   cor rec t   mix ing   ra t io  is known, assuming a l l  other   sources  of 

e r r o r  t o  be r e l a t i v e l y  small. 

2 

j 
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As an  illustration,  we  applied  this  method  to  the  synthetic 

data  of  Fig. 3 ,  assuming,  however,  the  value  of % (which  is 

equal  to 462 x 10 ) to be  unknown.  The  results  in  Fig. 8 of  the 

twelfth  iteration  clearly  show  that  the  residuals  have  one  minimum 

at  the  correct  value  of  the  mixing  ratio.  The  results  of  the 

third  iteration,  for  which T(z )  is  far  from  having  converged,  show 

that a good  approximation  to  the  value  of  the  mixing  ratio can.be 

obtained  with  just a rough  knowledge  of  the  temperature  profile. 

-6 02 

B. Case  of  the  Variable  Mixing  Ratio 

The  determination  of  the  composition  profile p ( z )  can  be 
S 

obtained  by  applying a mapping  transformation  similar  to  the  one 

used  for  T(p).  However,  the  relaxation  equation  required  to  trans- 

form  the I axis  into  the p s  axis  may,  in  some  cases,  be  hard  to 

express  analytically.  According  to  Eq. (7 ) ,  the  relaxation 

approach  can  be  generalized  to  solve  for  any  function  or  functional 

under  the  sign  of  integration.  If  g(z.)  is  the  temperature  pro- 

file  then a can  be  obtained  directly  from  Eq. (26) .  But  in  the 

case  of  the  composition  profile,  the  determination  of a is  more 

difficult  because p ( z )  appears  as a f u n c t i o n a l  in  the  kernel, 

3 

j 

j 
S 

aTcv., Z ,  < p s ( ~ ) > ,  . . . I  
az K(Vj, Z ,  < p s ( Z ) > ,  .-.I = 

since -r and K depend  on  the  distribution  of p ( z )  between  and z .  

The  notation <p ( z ) >  indicates  that  the  transmittance  and  the  ker- 

ne1  are  functionals  of p ( z )  . 
1. The General   Approach 

S 

S 

S 

To determine p ( z ) ,  let  us  first  integrate  Eq.  (23)  by  parts 
S 

and  write  the  result  as  in  Ref. 5 
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a b s o r b i n g   g a s  b y  the criterion of m i n i m i z a t i o n  of the r e s i d u a l s .  

( F r o m  Ref. 4 .  ) 

To determine p ( 2 . )  from a given set  of  radiance  measurements, 
S I  

assuming tha t   the   t empera ture   p rof i le  is  known and is  not   iso-  

thermal, we  map the  v a x i s   i n t o   t h e  z axis   accord ing   to  Eq. (5) 

then make an i n i t i a l   g u e s s  p (n)  (z . )  and solve  the  equation 
j j 

S 7 

t o  obtain a set  of sca l ing   f ac to r s  , f o r  j = 1, 2 . . . J. We 

generate   the  next   i terat ion  through  the  re laxat ion  equat ion 
7 

This   i t e r a t ion  process i s  repeated unt i l   each   va lue  of the   s ca l ing  

constants  approaches  unity,  which is  equiva len t   to   sa t i s fy ing   the  

r e s i d u a l s   i n  Eq. ( 9 ) .  This   re laxa t ion  method of so lu t ion   leads  t o  
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accurate  determination  of  composition  profiles  without  any a p r i o r i  

information  for  the  expected  solution,  as shown in  Fig. 9. 

The  relaxation'method  can  be  applied  in  conjunction  with any 

interpolation  formula.  The  extent  of  interpolation  is  dictated 

by  the  quadrature  requirements,  and  by  the  need  to  optimize  the 

quality  of  solutions  obtained  from a finite  set  of.sounding  fre- 

quencies.  Additional  details  on  this  subject  can  be  found  in 

section 2 of  Ref. 5 and  in  section 4 of  Ref. 6. 

2.  A p p r o x i m a t e   R e l a x a t i o n   E q u a t i o n  

The  determination  of  can  be  rather  time  consuming  because 
7 

it  requires  reevaluation  of T many  times.  Two  approximate  relax- 

ation  equations  have  been  derived  in  Eqs.  (13)  and  (17)  of  Ref. 5. 

We  give  here  one  approximation  to  the  relaxation  equation 

0 

where T and B are  functions  of  both v and z. Equation  (34)  proved 

to  be  very  useful  particularly  when cx is  close  to  unity. 

V. REMOTE  SOUNDING  IN  THE  PRESENCE OF CLOUDS 

Equation  (23)  is  derived  for  the  case  of  plane,  parallel, 

homogeneous and n o n s c a t t e r i n g  atmospheres.  This  is  an  ideal  case 

which  does  not  usually  apply  to  observations  in  the  presence  of 

clouds  or  other  horizontal  inhomogeneities.  In  this  section,  we 

treat  the  problem  of  remote  sounding  of  cloudy  atmospheres  for  the 

determination  of  the  "clear  column"  vertical  profiles,  i.e.,  the 

vertical  temperature  profiles  in  the  clear  portions of the  fields 

of  view.  We  will  separate  the  problem  into  two  parts.  The  first 

part  deals  with  the  simple  case  of a single  cloud  layer  or a single 

degree  of  horizontpl  inhomogeneity  and  the  second  part  deals  with 

the  general  case of multiple  cloud  layers.  The  treatment  of  this 
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f r o m  synthetic d a t a  w i t h  random noise. ( F r o m  R e f .  5 . )  

problem  in  this  section  will  be  brief  and  will  describe  only  the 

results  which  have  been  published  in  Refs. 13 to 16. Additional 

work  on  this  problem  is  still  continuing. 

A. Observations  in  the  Presence  of  a  Single  Cloud  Layer 

In  this  part,  we  treat  two  cases  of  clouds.  The  first  case 

is  general  and  requires  no a p r i o r i  knowledge  of  the  radiative 

properties  of  the  clouds.  The  second  case  is  for  clouds  with 

known  properties,  such  as  black  or  gray  clouds. 

1. C l o u d s  w i t h  S p e c t r a l l y  Unknown C h a r a c t e r i s t i c s  

We  consider  two  adjacent  fields  of  view  having  different 

fractional  cloud  covers at the  same  height z as  shown  in  Fig. 10. 

We  express  the  outgoing  radiance i, (v) and i2(v) from  the  first 

and  second  fields  of  view as 

C 

i, (v) = 1 (v) clear 

I (v)  = 1 ( V I  clear 

[ 1  1 
2 c 2  1 

- NIG(v, z t, r, e, . . . I  

- N2G (v ,  zc, t, r, e, . . . I  

C' 

- 
(35) 
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F i g .  10. The single cloud layer. 

Equation (35) makes no assumption  about   the  radiat ive  t ransfer  

proper t ies  of  clouds; it simply s ta tes   tha t   the   observed   rad iance  

i ( v )  i s  equa l   t o   t he   c l ea r  column radiance which would have  been 

measured in   the  absence of  clouds  minus  the  radiance G "obscured" 

by the  presence of a  fractional  cloud  cover N G is  unknown and 

depends  on.v, z and the   spec t r a l   p rope r t i e s  of the  clouds.  

k 

k' 

C ,  

I f   t he  two f i e l d s  of  view a r e  small and contiguous, we can 

assume t h a t  
r 1 r 1 

and s u b s t i t u t e   i n t o  Eq. ( 2 3 )  t o   e l imina te  G and g e t  

(36) i ( V )  = i, (v )  + rl ri, ( V I  - i, (v)  I 

N1 

N2 - N1 
where rl = unknown = 

Thus, i f  11 i s  known, we can  reconstruct   the   c lear  column radiance 

according  to Eq. (36) €or a l l   f r e q u e n c i e s  and proceed  to  recover 

T ( z )  as   desc r ibed   ea r l i e r .  
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According t o  Eq. (361, h can  be  determined f r o m  a knowledge 

of I ( V )  a t  any  frequency,  say V I ,  as 

However, the  exact   value  of   the clear column radiance I ( v ' )  is  

ac tua l ly  unknown because I(v') i t s e l f  depends  on T ( z ) .  Thus, t h e  

determination of rl and  T(z)  should  be  carried  out  simultaneously 

and the   se lec t ion   of  v '  should  sat isfy  cer ta in   convergence cri-  

t e r i o n   i n   o r d e r  t o  ensure  uniqueness of the   so lu t ion .  

The argument fo r   t he   s e l ec t ion  of v 1  i s  as fo l lows :   i f  

T (n) ( z )  i s  any  guess on the  solution  and I (n)  ( v '  ) is  the  corre-  

sponding  radiance  according t o  Eq. (23) , w e  g e t  from  Eq.. ( 3 7 ) .  

and by adding  and  subtracting I (v )  from the  numerator w e  g e t  

NOW, i n   o rde r  t o  minimize 6 ( n )  ( q )  , Eqs. (26 )  and (16) requi re  

t h a t  V I  < v where v is  the  set of temperature  sounding  frequen- 

c i e s .  By s imple  different ia t ion  of   the D13nck function  with 

respec t  t o  T and by s u b s t i t u t i o n   i n t o  Eq .  (26) ,  we can show t h a t  

6 (n)  ( n )  i s  d i r ec t ly   p ropor t iona l   t o  v for  a given  temperature 

e r r o r  AT = T ( z )  - T ( n )  ( z )  , as 

j j 

A t  t h e  same t i m e ,  the  frequency  range v '  should  be  cloud 

dependent so t h a t  i , ( v ' )  # I 2 ( v 1 ) .  

W e  c a n   t r a n s l a t e   t h i s   i n t o  a condition  for  convergence  and 

select v '  t o   ensu re   t ha t  
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E =  

The  basic steps  of  the  method of solution  for ?-I and T(z.1 are 
3 

shown  in  Fig. 11. 

1. Make  an  initial  guess (n = 0 )  for T(n) (2). 

2 .  Substitute T(n) (z) into  Eq. ( 2 3 )  and  compute I (n) ( v ’  ) and 

I(~) ( v , ) ; j  = 1, 2 ,  ... J. 
7 

3. Substitute I (n) ( V I )  into  Eq. (38) and  compute . 
4. Substitute ?-I (n) into  Eq. (36) and  reconstruct 

(n) 

5. If the  convergence  criterion E is  satisfied,  then 

T (n) ( v  .) is closer  to  the  exact  clear  column  radiance I ( v  . I  than 
7 7 

the  computed I (n) (v)  and  the  relaxation  equation 

B [ V .  , T(n -k ( Z . ) ]  I ( V . )  
- (n) 

= 3 ( j = I, ... J) (40) 
B [ V j ,  T(n) (2 .11 I (n) (v  . ) 

7 7 

is  used  to  obtain  the  new guess T (n + 1) ( z . 1 .  
3 

6. GO back to step 2 and  repeat  until 

Application  of  this  method  to  recover T(z) in  the  presence  of 

clouds  has  shown  that  the  solution  exhibits  the  same  characteristics 

as  in  the  case  of  clear  fields  of  view.  See  Ref. 6 for additional 

details. 

2. The S ing le  L a y e r  of B l a c k  Clouds 

For  the  case  of  black  clouds,  the  term G(v, zc, ... ) in 
Eq. ( 3 5 )  can  be  expressed  analytically  as 

100 

I 



where z is  the  cloud-top  height. By substituting Eq. (42)  into 

Eq. (35), and  using Eq. (23),  we  can  express  the  measured  radiance 

in any field of view i,(v) as  an  integral  function  of  the  clear 

column  temperature  profile  T(z),  the  cloud-top  height z and  the 

fractional  cloud  cover N, according  to Eq. (1) in-Ref.  13, as 

C 

C 

= N { B [ V ,  T(zc)l~(v, zc) 

RELAXATION  SOLUTION I 
Fig. 11. F l o w  diagram of   the   i terat ion method of  solution 

for  the  determination of the clear-column  temperature profi les.  

(From Ref. 14.) 
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If N and zc are  known,  it  is  obvious  that  the  problem  reduces  to 
the  case  described  earlier  in  this  paper.  In  practice,  however, 

neither z nor N are  known,  and  a  method  of  solution  should  be 
derived.to  account  for  (or  eliminate)  the  effects  of  clouds.  When 

we  solve  Eq. (23) for  measurements  made  in  the  presence of clouds 

(i-e.,  this  is  equivalent  to  assuming N = 0 in  Eq. (43)), we  obtain 

an  apparent  temperature  profile $ (z) which  is  different  from  the k 
true  clear-column  profile  T ( z )  . The  author  (Ref.  13)  derived  a 

simple  relationship  between T ( z )  and 5 ( z )  in  the  form  of 

C 

where  a = N/ (1 - N) and  B  is  the  Pianck  function  given  in  Eq. (16) . 
Let  us  consider  next  two  adjacent  fields  of  view  having  dif- 

ferent  amounts  of  clouds, N1 and N2, at  the  same  height z . We 
can  eliminate B [ v  T(z )] from  Eq. (44) and  write  (See  Eq.  (12) 

in  Ref.  13) 

C 

j' C 

B [ v j ,  T(z.11 = B [ v j r  T I  (zj)l 
3 

The  practical  benefits  of  Eq. (45) are  obvious.  The  clear  column 

temperature  profile  T(z)  can  now  be  recovered  directly  by  a  simple 

transformation  of  the  apparent  temperature  profiles T1(z )  and  T2(z) 

of  two  adjacent  fields  of  view.  is  an  unknown  constant  which  can 

be  determined  from an additional  frequency  as  described  earlier  in 

...  ... 

this  section. 

3. D e t e r m i n a t i o n  of the Amount  and  Height of C l o u d s  

The  value  of  the  fractional  cloud  cover N and  the  height z of 
C 

clouds  can  be  determined  when  the  radiative  transfer  properties  of 

the  clouds  in G ( v ,  zc, t, r, e, ...) are  given. 
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For  the  case  of  black  clouds,  the  author  (Ref. 4) showed,that 

by  substituting  Eq. (43) into  Eq. (35) and  by  taking  the  ratio  for 

two  different  sounding  frequences v1 and v2, we  get 

where  Eq. (46) is  now  a  function of one  unknown z , assuming  that 
T(n) ( z )  has  been  determined  as  described  earlier.  The  solution  for 

z can  be  obtained  by  minimization  techniques  as  described  in 

section 6 of  Ref. 6. The  corresponding  value  of N is  obtained 

directly  from  Eq. (35) as 

C 

C 

k 

Applications  of  this  approach  to  the  infrared  data  from  the  Vertical 

Temperature  Profile  Radiometer  (VTPR)  sounder  on NOAA 4 are  illus- 

trated  in  Fig.  12. 

B. Observations  in  the  Presence  of  Multiple  Cloud  Formations 

The  two  methods  described  earlier  for  the  elimination  of  the 

effects  of  a  single  layer.  of  clouds  can  be  extended  to  multiple 

cloud  formations  for  the  cases  of  clouds  with  spectrally  unknown 

characteristics  and  for  black  clouds.  Derivation  of  the  required 

equations  can  be  found  in  Ref. 14. A brief  summary of the  final 

results  will  be  given  next. 

1.  Clouds w i t h  S p e c t r a l l y  Unknown C h a r a c t e r i s t i c s  

Let  us  reexamine  Eq. (35) now  and  look  at NG, on  the  right- 

hand  side  of  the  equation,  as  a  one  term  expansion of the  dif- 

ference  between  the  clear  column  radiance  I(v)  and  the  radiance 

measured  in  the  presence of clouds (v)  . In  the  case  of  Eq. (35) , 
N is  just  a  coefficient  of  expansion  and G(v, z ,  t, r, e ,  ...) is 
the  expansion  function.  The  mathematical  form  of G need  not  be 
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f r o m  the VTPR s o u n d e r  on the N O M  4 s a t e l l i t e ,  for the p e r i o d  of 

January  1-7,  1975. 
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defined  because  it  will  be  eliminated  by  using  measurements  from 

adjacent  fields  of  view  as  shown  in  Eq.  (35).  A  knowledge  of  the 

form  of  the  function G is  necessary,  however,  if  we  need  to  deter- 

mine  the  amount  of  the  corresponding  fractional  cloud  covers. 

The  one-term  expansion  of  Eq.  (35)  may  not  be  sufficient  in 

the  presence  of  multiple  cloud  formations.  Therefore,  we  propose 

to  use  a  three-term  expansion  of  the  form 

Iclear 
( V )  - I ( V )  = .N' G' + N'' GI' + Nu'' GI" 

k k  k  k 

with G' = G '  (v, z ,  t' , r' , e', . . .) and  similarly  for G" and G"' . 
The  expansion  functions G depend  on v and z as  well  as  on  the  cloud 

transmissivity  t,  reflectivity  r  and  emissivity  e. N', N"  and  N"' 

are  the  expansion  coefficients.  The  next  step  now  is  to  eliminate 

G from Eq. (48) and  express I ( v )  as  a  function (v) and  Ni,  Ni k 

In  order  to  eliminate  the  expansion  functions,  we  consider 

observations  over  four  adjacent  fields  of  view, K = 1, 2, 3, and  4, 

and  use  the  first  three  equations  to  express GI, GI' and G"' as 

functions  of  the  Nk, I (v)  and f k ( v ) .  We  substitute  the  results 

into  Eq. (48) for k = 4 and  write 

Details  of  the  substitution  are  given  in  Appendix A of  Ref. 15. 

As  expected,  we  note  that  the  first  term, R = 1, of Eq. (49) corre- 

sponds  to  the  case  of  a  single  cloud  layer  as  given  in  Eq.  (36). 

The  determination  of  T(z)  and q is  carried  out  simultaneously R 
by  iterations  according  to  the  steps  given  in  Fig. 11. A  typical 

illustration  of  the  accuracy  of  this  method  is  shown  in Fig. 13, 

using  synthetic  radiance  data.  Additional  details  on  the  accuracy 

and  stability  of  the  solution  are  given  in  Ref. 14. Experimental 
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AT, OC TEMPERATURE, K 

F i g .  13.  De termina t ion  of the c lear-co lumn  temperature   pro-  

f i l e  i n  the p r e s e n c e  of three c l o u d   l a y e r s .  ( F r o m  R e f .  1 4 . )  

verification of the  expansion  approach has been  obtained  and  dis- 

cussed  in  Refs. 15 and 16. 

We  conclude  the  discussion  here  by  indicating  that  the  use of 

more  than four  expansion  terms is feasible  from  a  mathematical 

point of view,  but  from  an  experimental  point  of  view  the  expansion 

may  not  converge  always  because of the  effects of noise  in  the 

data  and  uncertainties  in  the  accuracy  of  the  computed  kernels. 

2. M u l t i p l e   L a y e r s  of Black   Clouds  

In  the  case of black  clouds, Eq. (45) can  be  extended to read 
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where .?I ( z  ) is  the  apparent  temperature  profile,  over  the  kth 

field  of  view  (obtained  without  accounting  for  the  effects  of 

clouds).  The  coefficients qR should  be  determined  from  additional 

radiance  data  measured  at  different  frequencies  over  the  same  k 

fields  of  view  or  from a priori knowledge  of  certain  properties  of 

the  solution,  such  as  the  value of T(z) or  the  lapse  rate  dT/dz 

at  given  heights z. 

k j  

VI.  APPLICATIONS AND EXTENSIONS 

The  mapping  transformation  method  described  in  this  paper  has 

been  presented  specifically  as  a  method  of  solution  of  the  non- 

linear  radiative  transfer  equation.  However,  it  must  be  obvious 

that  the  mapping  transformation  is  general  and  can  be  applied  to  a 

wide  class  of  nonlinear  as  well  as  linear  integral  equations,  as 

in  the  case  of  the  analytical  example.  The  only  requirement  is 

for  the  kernel K ( v ,  z )  to  be  a  rapidly  decaying  function  with 

maxima  occurring  at  different  values  of z for  different  values  of 

V .  

Extensions  of  this  method  and  applications  to  other  linear 

and  nonlinear  problems  can  be  found  in  the  works  of  Barcilon 

(Ref. 7 ) ,  Menzies,  et  al.  (Ref. 17), Twomey,  et  al.  (Refs. 18 and 

19) , Twitty  (Ref. 20) , Grass1  (Ref. 21) , Gautier,  et  al.  (Ref. 22) , 
Encrenaz,  et  al.  (Ref. 23), and  Gille,  et  al.  (Ref. 24). 

SYMBOLS 

a  constant  defined  in  Eq. (16) 

b  constant  defined  in  Eq. (16) 

B  Planck  function 

C subscript  denoting  clouds 

E convergence  criterion 

g  function  to  be  determined 
G radiance  from  cloudy  portion  of  fields  of  view 

I  radiance  function 
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1. 

k 

K 

n 

N 

N 
P 

R 

s 

T 

T 
- 
z 

E 

rl 

V 

outgoing  radi'ance  measurement 

abso rp t ion   coe f f i c i en t  

kernel  of  integral   equation 

number o f   i t e r a t i o n s  

fract ional   c loud  covers  

i n t e g r a l  operator 

Pressure 

r e s idua l   func t ion   de f ined   i n   t ex t  

subscript   denoting  absorbing  gas 

temperature 

apparent   temperature   prof i le  

geopotent ia l   height  

lower  and  upper limits of   the  range  of   integrat ion 

relaxat ion  weight  

s ca l ing   f ac to r  Eq. ( 7 )  

weighted  scaling  factor Eq.  (10) 

l ine   ha l f   wid th  

random error 

c loud   coef f ic ien ts  

frequency, c m  

a i r  dens i ty  

atmospheric  transmittance 

instrument  function 
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DISCUSSION 

Rodgers:  Can  you produce  an estimate of the  error i n  your   f i na l  
so lu t ion 'u s ing   t he   r e l axa t ion  method? I mean t h e  total  error. 

Chahine: This  i s  a nonlinear  equation  and it is v e r y   d i f f i c u l t   t o  
de t e rmine   exp l i c i t l y   t he   e f f ec t s   o f   no i se   i n   t he   da t a  on the  
accuracy of t h e   f i n a l   s o l u t i o n .  By t ry ing  several cases of  noise 
l e v e l s ,  it becomes poss ib le  t o  descr ibe  the  growth of errors i n  
the   so lu t ion  as a func t ion   of   no ise   in   the   da ta .   Professor  
Barcilone'  has shown that   the   growth of errors i n   t h e   f i n a l   s o l u -  
t i o n  i s  cyc l i ca l .   I n   o the r  words,  he  has shown that   the   growth 
o f   e r r o r s   i n   t h e  f i n a l  so lu t ion   does   no t   vary   l inear ly   wi th   the  
growth  of   noise   in   the  given  funct ion.  

Rodgers:  T h i s   i s n ' t   q u i t e  what I meant. I meant the  departure   of  
your  solution from the  real profile. I d i d n ' t  mean the   sens i - -  
t i v i ty   o f   your   so lu t ion  on   no i se   i n   t he  measurement. 

Chahine: That  depends on the   degree   o f   d i scre t iza t ion  of the  given 
f u n c t i o n   o r   i n   o t h e r  words  on the  information  content  of  the  given 
data .  It depends  also  on  any a p r i o r i  information  available  about 
the  expected  solut ion.  

G i l l e :  When you iterate and   dr ive   the   rad iance   res idua ls  down, 
they  drop  monotonically. Does the  error of  your  temperature 
so lu t ion  also drop  monotonically? 

Chahine: D u r i n g   t h e   f i r s t  few i t e r a t i o n s ,   t h e  errors in   t he   so lu -  
t ion  decrease  monotonically  with  the  radiance  residuals.  However, 
when the   decrease   in   the   rad iance   res idua ls  R ( n )  becomes s l o w 2  
the  accuracy  of   the  solut ion becomes' dependent  not  only  on  the R(n)  
but  also on i t s  f i r s t  and  second  derivatives.  Thus, a t  higher 
i t e r a t i o n s ,  beyond the   po in t   o f  maximum curva ture   in   the   F igure ,  
t h e   e r r o r s   i n   t h e   s o l u t i o n  do not  necessarily  decrease  monotonically 
with  R(n) ; and  very  often  they don ' t . 
Fleming:  I would l i k e  t o  take  exception t o  your statement t h a t  
your   solut ion  does  not   depend  on  the  ini t ia l   prof i le .   I f   the  
Chairman w i l l  permit m e ,  I have a s l i d e   t o   i l l u s t r a t e  my poin t .  

~ ~ " 

'See Ref. 7 i n   t h i s   p a p e r .  

2 
Pointing t o  Fig. 7. 
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This  is  a  VTPR  simulation  study  in  which  we  have  107  retrievals  by 
the  Chahine  method on the  right-hand  side.  The  arrows  show  the 
locations  of  the  peaks  of  weighting  functions  and  the  dashed  line 
is  the RMS error  of  the  solutions  when  forecasts  were  used  for  the 
initial  approximation.  The  solid  line  is  the F?MS error  of  the 
solutions  when  climatology is used  for  the  initial  approximation. 
Notice  that  there  is  a  definite  dependence  of  the  solution  on  what 
is  used  as  the  initial  approximation.  On  the  left  is  the  same 
situation,  except  the  retrieval  method  is  the  Rodgers-Strand- 
Westwater  statistical  solution.  Clearly,  the  Chahine  method  shows 
a  dependence on  the  first  guess  virtually  of  the  same  magnitude  as 
the Rodgers-Strand-Westwater method. 

Chah ine :  I agree  with  you  here  because  the  slide I presented on 
the  VTPR  showed  very  strong  dependence  on  the  initial  guess. I 
agree  with  your  results. 

Fleming:  But  you  just  said  and  your  abstract  said  it  is  not 
dependent on the  initial  guess. 
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Chahine: That  depends on t h e  properties of the kernel   and  the 
given  functions.  I n  my abstract I w a s  no t   dea l ing   spec i f i ca l ly  
wi th   the  VTPR data .  I s a i d  from a complete set of da ta  you should 
be able t o  g e t  a complete solution  independent of t h e  i n i t i a l  guess. 
But for  the  case of the  VTPR, the   g iven   da ta  are incomplete and, 
therefore ,   the   so lu t ion  is incomplete  and  depends on t h e  i n i t i a l  
guess .   For   the   spec i f ic   resu l t  you have shown on t h e  VTPR I agree 
with  your  conclusion. 

S u s s k i n d :  I would l i k e  t o  make a comment on the  past two  comments. 
When w e  ta lk   about   the  dependence  of   the  ini t ia l   guess ,   there   are  
t w o  d i f f e r e n t   t h i n g s  which  would cause  dependence on t h &   i n i t i a l  
guess   tha t  D r .  Chahine w a s  j u s t   r e f e r r i n g  to. F i r s t ,   i f  w e  think 
about   the  effects   of   c louds  and  the  abi l i ty  t o  r e t r i eve   su r f ace  
temperatures, i f  you only  have VTPR soundings  and you want t o  
f i l t e r   o u t   t h e   e f f e c t s  of  clouds,  then you have t o  re turn   the   guess  
a t  the  surface,   because  there  is  su f f i c i en t   i n fo rma t ion   i n   t he  
observations t o  cons t ruc t   the  clear column radiances.  That's  one 
dependence of the  guess.  You ge t .  a surface  temperature   that   looks 
l i ke   t he   guess ,   t hen   t ha t ' s   one   k ind  of  problem. Even i f  you have 
the  clear column radiance  and  you-don't  have t o  worry a b o u t  t h e  
clouds,   the  shape of t h e   p r o f i l e  t o  some ex ten t  is  what is  impor- 
t a n t .  You have  information a t ,  say,  the  peaks  of  the  weighting 
funct ions  of   the   channel ,   that  much information,  and you have t o  
make some assumptions as t o  what's  happening i n  between those 
poin ts .   I f   the   shape   of   the   in i t ia l   guess  i s  wrong, the  shape  of 
t he   so lu t ion  w i l l  be wrong. The f i n e   v e r t i c a l   s t r u c t u r e   o f   t h e  
so lu t ion   has   to   fo l low  the  guess. I f   t h e   p o i n t s  come c lose r  and 
c loser   toge ther  so t h a t  you have more information,  then you could 
say to  bet ter   approximation  that   the   solut ion  does become inde- 
pendent   of   the   guess   because  you ' re   ta lking  about   errors   in   shape 
between p o i n t s   t h a t  are very  close  together  and i t ' s  not--well, 
i t ' s  e s s e n t i a l l y   l i n e a r   i n   t h e r e .  It  doesn ' t   mat ter   what ' s  hap- 
pening. So the re  are two d i f f e ren t   t h ings   t ha t   cause  dependence 
on the  guess.  

S t a e l i n :  Does your method app ly   t o   ce r t a in   o the r   s i t ua t ions?  You 
began by saying you might  associate  each  frequency  with  that  a l t i -  
tude where the  weighting  function  peaks.  There are certain  problems 
where a l l  the  weighting  functions  peak a t  the  same a l t i t u d e ,  how- 
ever.  For  example, i f  you are a t tempt ing   to  sound  temperature by 
looking  up from the  ground  every  weighting  function  peaks a t  t he  . 

surface.   Other  problems  involve  weighting  functions  that   have t w o  
peaks. Does your method apply   to   these   cases?  

Chahine:  Yes it does,   but   the  r e su l t s  are n o t   a s   s a t i s f a c t o r y  as 
fo r   t he   ca se  where  the  weight ing  funct ion  has   dis t inct   peaks a t  
d i f f e ren t   va lues  of the  physical  axis. I f  you cannot  discriminate 
between  the  information  received from d i f f e ren t   he igh t s ,  you can- 
not  have a sa t i s fac tory   inverse   so lu t ion .   Professor  Twomey has 
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introduced  a  modification  to  the  relaxation  equation  which  applies 
to the  case  you  have  just  described.1 

Twomey: You  showed  one  of  the  last  graphs  and  there  was  the 
residual  decreasing to  the  error  level  and  then  flattening  out. 
I have  seen  this  same  behavior  in  algorithms,  and  it's  kind  of 
spookey,  really.,  The  thing I want  to  ask  though  is  the  following: 
This  seems  to  hold  with  random  errors  and I have  the  feeling  that 
there  must  be  some  kind  of  error  that  would  be  disastrous  which 
the  thing  would  try  to  invert.  Have  you  found out anything  about 
the  character  of  that  kind of error? 

Chahine:  Yes.  But  first,  regarding  the  property  of  the  residuals 
shown  here2, I thought  at  first  when I noticed  that  the  residuals 
did  not  decay  down  to  zero  in  the  presence  of  noise  in  the  data, 
this  behavior  is  a  property of the  nonlinear  equations I was 
studying.  However,  in  examining  the  residuals  obtained  by  Dr. 
Twitty3  for  his  linear  equation, I found  out  that  the  residuals 
in  his  case  also  decreased  rapidly at  first  and  then  approached  an 
asymptotic  value  nearly  equal  to  the  errors  in  the  data.  Because 
of this, I now  believe  that  this  behavior of the  residuals  is  due 
to  the  types  of o v e r l a p p i n g  kernels  under  consideration.  Now  when 
does  this  property of the  residuals  break  down?  Usuaily  it  does 
not  faii  in  the  presence  of  systematic  noise  alone or random  noise 
alone.  But  it  sometimes  breaks  down  when  random  and  system  noise 
are  both  large  and  are  both  present  in  the  data. 

W e s t w a t e r :  On  your  statement  that  the  residuals  converged  to  the 
noise  level,  does  this  convergence  depend  on  the  method  of  inter- 
polation  that  you  use  to  fit  the  function "f"? You  would  think 
that  linearly  interpolating  between  estimated  points  might  con- 
ceivably  give  a  different  residual  than  a  quadratic  interpolation 
or  a  higher  order  interpolation. 

Chahine:  Yes,  because  in  the  absence  of  noise  in  the  data,  the 
residuals  decrease  rapidly  and  approach  an  asymptotic  level  equal 
to  the  quadrature  error.  Now,  different  interpolation  methods  will 
introduce  different  quadrature  errors  and,  therefore,  the  residuals 
will  approach  different  values  reflecting  the  level  of  quadrature 
errors  in  the  solution. 

Westwater:  That  would  imply  to  me  that  you're  really  not  con- 
verging  to  the  noise  level,  because  if  you're  converging  to  a 

See  Ref. 19 in  this  paper. 

2See  Fig. 7 in  this  paper. 

3See  Ref. 20 in  this  paper. 
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quantity that depends upon method of interpolation that you're 
using, that really does not bear a direct relationship to the 
noise level. 

Chahine: The noise Ievel in the system of equations is the sum of 
the systematic noise, the  random noise as well as the quadrature 
noise. 
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STATISTICAL  PRINCIPLES OF 

INVERSION  THEORY 

C. D . Rodgers 
Clarendon  Laboratory  

The accuracy  o f  s o l u t i o n s  t o  the inverse prob lem o f  
r a d i a t i v e   t r a n s f e r  i s  a t o p i c   t h a t   h a s  received v e r y  l i t t l e  
a t t e n t i o n  f r o m  the t h e o r e t i c a l  point o f  view i n  the meteorol- 
o g i c a l   l i t e r a t u r e .  Many o f  the s o u r c e s  o f  error a r e   s t a -  
t i s t i c a l  i n  n a t u r e ,   a n d   s t a t i s t i c a l  me thods  mus t  be used  t o  
d e a l  w i t h  them. Such  me thods  g i v e   c o n s i d e r a b l e   i n s i g h t  i n to  
both the n a t u r e  o f  the problem  and the n a t u r e  o f  the s o l u -  
t ion.  

All the a v a i l a b l e   i n f o r m a t i o n   a b o u t   a n  unknown p r o f i l e  
can  be e x p r e s s e d  i n  the form o f  v a l u e s  o f  f u n c t i o n s  o f  t h a t  
p r o f i l e  and error e s t i m a t e s  o f  these v a l u e s .   E s t i m a t i o n  
t h e o r y  shows how these v a l u e s   a r e  combined t o  give a n  es t i -  
mate o f  the unknown p r o f i l e  and i t s  error c o v a r i a n c e .  Many 
inversion methods can  be e x p r e s s e d  i n  this form, a l t h o u g h  
the error e s t i m a t e  i s  not u s u a l l y   c a r r i e d   o u t .   P r a c t i c a l  
a p p l i c a t i o n s   a r e  described, both for  inversion o f  i n d i v i d u a l  
p r o f i l e s ,  and the g l o b a l   a n a l y s i s  o f  s a t e l l i t e   d a t a .  

I.  INTRODUCTION 

This  paper  is  based,  to a large  extent,  on a review  paper 

(Ref.  l),  which  covers-  many of the  topics  in  much  more  detail. 

The  subject  is  not  new  by  any  means.  However,  the  implications 

of a correct  statistical  analysis of meteorological  inverse  prob- 

lems  do  not  seem  to  be  properly  appreciated, so it  seemed  reason- 

able  to  try  to  state  them  clearly  at  this  Workshop.  All  physical 

problems  involving  measurements  of  continuous  variables  must  be 

analyzed  by  statistical  methods  simply  because  measurement  error 
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is  statistical  in  nature.  We  can  never  measure  an  exact  value, 

we  can  only  say  that  the  value  lies  in  such  and  such  a  range,  or 

belongs  to  a  population  with  a  known  probability  density  function. 

Any  quantity  derived  from  the  measurement  is  also  a  random  variable, 

and  in  developing  methods  for  finding  derived  quantities,  we  must 

take  account  of  this  fact.  There  are  standard  statistical  tools 

available  (e.g.,  Ref. 2);  therefore,  it  is  not  necessary  to  invent 

anything  new--it  is  just  a  matter  of  recognizing  when  a  parti'cular 

tool  is  applicable  to  the  problem  in  hand. 

The  kind of question  that  we  would  like  to  answer  is  some- 

thing  like  this:  Given  a  set  of  measurements of radiation  emitted 

(reflected,  scattered)  by  the  atmosphere,  our  current  understanding 

of  the  physics  of  the  atmosphere,  and  any  other  measurements  that 

may  be  relevant,  what  can  we  say  about  the  state of the  atmosphere? 

The  question  is  usually  expressed  in  terms  of  profiles  of  unknown 

quantities,  such  as  temperature  and  composition.  Given  a  measure- 

ment  of  a  known  function  of  a  profile,  estimate  that  profile  when 

there  are  experimental  errors  in  the  measurement,  and  errors  in 

our  knowledge  of  the  function. An essential  part  of  the  measure- 

ment  is  a  proper  characterization  of  both  kinds  of  errors.  If  we 

do  not  know  the  magnitude of the  error  in  a  measurement  or  in  the 

theory,  the  measurement  is  not  worth  making. 

A little  thought  shows  that  this  question can only  be  answered 

in  a  statistical  sense.  Given  a  probability  density  function  rep- 

resenting  our  knowledge of some  function  of  a  profile,  find  a 

probability  density  function  representing  our  knowledge  of  the 

profile  itself.  This  applies  to  almost  any  physical  measurement 

of  almost  anything,  but  it is a  little  more  complicated  in  our  case 

because  the  result  is  a  profile,  rather  than  a  single  number  to 

which  we  can  assign  error  bars. 

If  we  are  going  to  discuss  general  profiles,  we  should  use 

the  algebra  of  Hilbert  space.  It  seems  to  me  that  the  use  of 

Hilbert  space  notation  is  an  unnecessary  complication  in  this 
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subject.  This  is  not  because  the  algebra is more  difficult  than 

the  algebra of matrices,  but  simply  that  many  physicists  are 

unfamiliar  with  the  mathematical  jargon,  and  in  the  end  computer 

programs  that  implement  inversion  methods  will  use  the  algebra  of 

matrices.  In  practice,  it  is  not  possible  to  specify an absolutely 

general  profile  because  this  would  require  an  uncountable  infinity 

of numbers.  We  must,  therefore,  deal  with  profiles  that  can  be 

specified  by  a  finite  number  of  numbers,  using  some  representation 

or  discretization  of  the  profile. An important  consideration  in 

the  choice  of  representation  is  that  it  must  be  indistinguishable 

from  the  true  profile  for  all  practical  purposes.  In  our  case,  the 

radiation  emitted  by  an  atmosphere  with  the  true  profile  must  be 

the  same  as  that  emitted  by  an  atmosphere  with  a  profile  given  by 

the  corresponding  representation  well  within  experimental  error. 

At  this  point,  we  run  up  against  the  main  problem  of  all 

inversion  methods.  The  problem  is  ill  posed  (underconstrained). 

We  need  a  relatively  large  number  of  numbers to construct  a 

reasonable  representation,  and  our  measurement  of  radiation  is 

usually  made  in  a  relatively  small  number  of  spectral  intervals 

(or  scan  angles  in  the  case  of  limb  sounding).  Even  if  there  were 

no  experimental  error,  there  are  usually  not  enough  measurements 

to  determine  a  profile  uniquely.  The  presence of experimental 

error  simply  makes  the  problem  worse. 

11. A  STATISTICAL  APPROACH 

The  only  way  of  solving  the  problem  is  by  making  use  of  some 

kind of extra a p r i o r i  information.  (The  alternative  is  to  find 

a  different  problem  to  solve.)  The  source of a p r i o r i  information 

may  be  the  physics  of  the  problem,  statistics  of  other  measure- 

ments,  arbitrary  restrictions,  prejudice,  etc.  The  information, 

itself,  can  take  many  forms,  such  as  representations  with  smaller 

number  of  parameters,  smoothness,  least  squares  deviation  from 

some a p r i o r i  profile,  climatology,  etc.,  but  whatever  the  form, 
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they  are  all  similar  in  nature.  They  contain  (or  purport  to  con- 

tain)  information  about  the  unknown  profile,  just  as  the  measure- 

ments  do. An enlightening  way  of  describing a p r i o r i  information 

is  to  call  it  "virtual  measurements."  They  provide  values  of 

known  functions  of  the  unknown  profile  with  specified  errors  just 

as  the  real  measurements  do.  To  solve  an  inverse  problem,  the 

real  measurements  and  the  virtual  measurements  must  contain  enough 

pieces  of  information  to  determine  all  the  parameters  of  the  pro- 

file  with  an  accuracy  adequate  for  the  application,  i.e.,  there 

must  be  enough  virtual  measurements  to  make  the  problem  well 

posed. 

One  way  of  considering  the  problem  in  order  to  develop  some 

physical  insight  is  to  express  it  in  terms  of  N-dimensional  geom- 

etry,  with  N = 3 for  the  purpose  of  imagining  what  might  happen. 

If  the  representation  of  the  profile  requires  N  parameters,  we  can 

treat  it  as  a  point  in  an  N  dimensional  "profile  space"  with  the 

parameters  as  coordinates. A p r i o r i  information  can  be  regarded 

as  giving  a  value  and  uncertainty  (including  covariance)  to  these 

parameters,  or  equivalently,  can  be  regarded as specifying  a 

region  of  profile  space  within  which  we  believe  the  solution  to 

lie.  This a p r i o r i  constraint  region  may  or  may  not  be  infinite 

in  extent.  In  the  example  in  Fig. 1, the a p r i o r i  region  is  rep- 

resented  by  the  large  ellipsoid. 

The  measurement  consists  of M numbers,  each  of  which  is  a 

known  function  of  the  profile.  They  represent  a  point  in  an M 

dimensional  "measurement  space,"  which  is  a  mapping  of  profile 

space.  Typically, M << N,  and  a  point  in  measurement  space  maps 

on  to  a  region  of  profile  space.  This  region  is  the  class  of  pro- 

files  which  are  consistent  with  the  measurements.  In  Fig. 1, such 

a  region  is  represented  by  the  axis  of  the  infinite  cylinder.  The 

finite  width  of  the  cylinder  expresses  experimental  error.  The 

class  of  solutions  which  is  consistent  with  both  the  measurements 

and  the  constraints  within  the  error  bounds  is  represented  by  the 
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F i g .  1. I l l u s t r a t i n g  the r e l a t i o n s h i p  i n  p r o f i l e   s p a c e  

between the a p r i o r i   i n f o r m a t i o n  (x o,Sx), the measurement 

( K  S K )  and the s o l u t i o n  (9,;). T -1 
E 

small  ellipsoid  in  Fig. 1. We  can  see  that  the  main  effect  of  the 

constraints  is  to  determine  those  components  of  the  profile  which 

are  not  determined  by  the  measurement--in  this  case,  position 

along  the  cylinder.  The  aim  of  statistical  inverse  theory  is  to 

determine  the  position  and  extent of the  solution  region  of  pro- 

file  space,  i.e.,  to  find  the  solution  and  its  uncertainty,  or  to 

characterize  the  class  of  profiles  consistent  with  both  the  real 

and  the  virtual  measurements. 

I I I. LINEARITY 

We  can  classify  inverse  problems  according  to  their  degree 

of  nonlinearity  in  terms of the  methods  used  to  solve  them  and 

to  carry  out  the  error  analysis.  One  such  classification  is 

1. Linear:  Linear  problems  can  be  solved  explicitly,  pro- 

vided  that  there  are  enough  measurements,  both  real  and  virtual, 
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so that  the  problem  is  well  p,osed.  Few  real  problems  are  linear. 

2. Nearly  linear:  This  class of problems  can  be  linearized 

and  solved  with a few  iterations. 

3.' Moderately  nonlinear:  These  are  sufficiently  nonlinear 

for an ad  hoc  method  to  be  required  to  find a solution  efficiently, . 

but  are  linear  enough  within  the  error  boundsto  ensure  that  the  error 

analysis  can  be  carried  out  with  linear  theory. 

4. Grossly  nonlinear:  These  are  nonlinear,  even  within  the 

error  bounds  of  the  solution. 

In  many  cases,  considerable  improvement  can  be  gained  by  not 

solving  for  the  profile  directly,  but  by  solving  for  some  non- 

linear  furiction  of  it.  Fox  example,  if  we  solve  for a Planck 

function  profile  rather  than a temperature  profile,  in  the  case 

of 4 . 3  pm  band  or 15 pm band  temperature  sounding,  the  Problem 

becomes  nearly  linear  rather  than  moderately  nonlinear. 

IV.  LINEAR ERROR ANALYSIS 

The  purpose  of  error  analysis  is  to  characterize  the  class  of 

profiles  which  are  consistent  with  the  measurement.  Linear  error 

analysis  applies  to  all  except  grossly  nonlinear  problems.  We 

will  assume  that  we  have  somehow  found a profile  which  is a 

solution  within  the  error  bounds.  We  will  use it as a lineariza- 

tion  point. 

The  measurement y is a known  function  F(x) of the  unknown 

profile  represented  by  the  vector  of  parameters x,  with  error 

covariance S 
Y 

y = F(x) + E Covariance ( E )  = S 
I Y 

We  assume  that  within  the  error  bounds  of  the  solution,  this 

equation  can  be  linearized  about  our  initial  solution  to 
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Denote  the  Frechet  derivative  3F/ax  by  the  matrix K, and  we  can 

write : 
% 

The a priori information  can be linearized  similarly.  For  sim- 

plicity,  we  will  only  consider  the  case  where Z is  an a priori  

value  for  the  profile x, with  covariance S . 
X 

x = j i + s  I Covariance ( 5 )  = Sx. (2) 
I 

where 5 is a random  vector. 

There  are  standard  statistical  methods  for  combining  indepen- 

dent  measurements  of  the  same  quantity,  such  as Eqs. (1) and (2). 

They  are  based  on  expected  value,  minimum  variance  or  maximum 

likelihood  estimators.  The  one  everybody  should  be  familiar  with 

is  the  combination  of  two  scalar  measurements.  If x1 and x2 are 

two  independent  measurements  of  an  unknown x, with  standard  devia- 

tions u1 and a2, respectively,  then  the  best  estimate  of x is 2 

with  standard  deviation $ where 

2 = a x , / a :  + x2/o$) 

i.e.,  the  measurements  are  weighted  inversely  with  their  variances. 

In  our  multivariate  case,  this  generalizes  to 

2 = (Sx + ,K S K) 
'L Y Q  

-1 T -1 -' 

which  is  in  effect a weighted-mean of  two  independent  measurements 

of x - x weighted  with  inverse  covariancednatrices.  One  estimate 

is f - x ,and  the  other  is E* (y - F (x,) ) where ,K is  any  matrix 

such  that ,p&* is a unit  matrix.  The  second  estimate  is  not  unique 
because K* is  not  unique.  For  the  purposes  of  this  secf-ion, 2 is 

0' * 
0 

'L  'L 
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the  more  important  quantity,  being  the  covariance  matrix  of  the 

solution 2. It contains  information  about  the  uncertainty  in 2, 
it  bounds  the  class  of  acceptable  solutions. 

Equations ( 3 )  and (4 )  comprise  the  complete  solution  in  the 

case  of  linear  problems  and  define  the  iteration  to  be  carried 

out  in  the  case  of  nearly  linear  problems.  At  each  stage  of  the 

iteration x is  replaced  by j ;  from  the  previous  stage.  Apparently 

different  solutions  (e.g.,  statistical,  Twomey-Tichenov,  etc.)  only 

differ  in  the  form  of X and S which  express  the  nature  of  the 

a priori constraints.  In  the  case of moderately  nonlinear  prob- 

lems,  it  may  be  necessary  for  efficiency  to  find x by""using  some 

ad hoc procedure,  such  as  Chahine's  method,  but a final  stage  of- 

linearization  and  error  analysis  should  be  carried  out  according 

to E q s .  ( 3 )  and ( 4 ) .  

0 

X, 

0 

To understand  the  meaning  of  the  covariance  matrix 2, we  can 
examine  the  diagonal  elements,  which  comprise  the  "residual  vari- 

ance"  or  accuracy  of  the  individual  elements  of  the  solution  pro- 

file.  This  examination  is  illustrated  in  Fig. 2 for an idealized  case. 

Residual  variance  gives a useful  rough  estimate  of  the  accuracy  of 

the  solution  profile,  but  it  is  not a complete  description.  Off- 

diagonal  elements  of ; are  generally  nanzero, so that  there  are 
correlations  between  the  errors  at  different  levels. 

% 

The  form  of  the  errors  may  be  more  easily  understood  if  we 

diagonalize  the  error  covariance  matrix  by  finding  its  eigenvalues 

and  vectors.  The  vectors  form a set  of  "error  patterns"  whose 

coefficients  are  statistically  independent  from  each  other,  and 

the  values  are  the  variances  of  these  coefficients. An illus- 

tration  of  such a set  of  error  patterns  is  given  in  Fig. 3 and 

Table 1. The  solution  is  uncertain  to  the  extent  of  adding  each 

pattern to it  with a coefficient  which  is  random  and  has a vari- 

ance  given by A . Note  that  all  the  patterns  have  only  fine  scale 
structure  which  is  on  the  same  kind  of  space  scale  in  all  cases. 

n 
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9.0 

8.0 

7.0 

I 

3.0 

2.0 

1.0 

0.0 

Standard  Deviation mW m-' star-' waveno-' 

F i g .  2.  A comparison  o f  t o t a l   v a r i a n c e  (sol id  l ine)  and 

r e s i d u a l   v a r i a n c e   ( d a s h e d )  f o r  a synthetic c a s e   u s i n g   e i g h t  

w e i g h t i n g   f u n c t i o n s  which p e a k  on the range f r o m  1.7 t o  7.5 s c a l e  

h e i g h t s ,  and a r e a l i s t i c   s t a t i s t i c a l   c o v a r i a n c e   m a t r i x .  

I 

-.6 -.4 - . 2  .O .2 .4 .6 
Normalised Eigenvector 

Fig. 3. Error p a t t e r n s  for  the same case as F i g .  2 .  
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TABLE 1 

E i g e n v a l u e s  of the S o l u t i o n   C o v a r i a n c e  
for a n   I d e a l i z e d   C a s e  

n 1 2 3 4 5 6 7 8 

'n 469 274 84 47 40 36 21 19 

V. NONLINEAR ERROR ANALYSIS 

There  is  no  general  method of error  analysis  that  can  apply 

to  all  nonlinear  problems,  just  as  there  is  no  general  solution. 

However,  we  can  outline a strategy  based  on  the  linear  error 

analysis  which  will  give a good  indication  of  the  solution  error 

and  the  degree of nonlinearity. 

We  must  first  define  what  is  meant  by a solution  in  the  non- 

linear  case.  This  will  be  something  like  the m a x i m u m  of a likeli- 

hood,  or  the  minimum  of a quadratic  risk  function,  for  example 

8 might  be  the  minimum of 

(x - x)  Sx (x - x) + (y - F(x)) S (y - F(x)) T -1 T -1 
Y (5) 

where  we  have  used  linear a priori information {X, S } and a non- 

linear  observing  system--F(x).  More  general  expressions  can  be 

used.  The  minimization  is  possible  in  principle,  but I do  not 

wish  to  discuss  how  it  should  be  done. A linearization  is  pos- 

sible  about 2 ,  and  we  can  define a matrix 2 as  in  Eq. ( 3 )  . The 

linearization  may  not  be  valid  in  the  region  of  profile  space 

defined  by 2 , and  the  only  way  to  find  out  is  to  explore  that 
region  empirically,  or  to  examine  higher  order  terms  in  the  expan- 

sion  of y in  terms of x - 2. It  is  usually  much  easier  to  explore 

empirically  than  to  expand  to  quadratic  and  cubic  terms. A sen- 

sible  strategy  is  to  explore  in  the  direction  of  the  eigenvectors 

of ,$ to a distance  from 2 given  by  the  square  root of the 

X 

% 
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corresponding  eigenvalue.  In  terms  of  the  illustration  in  Fig. 1, 

we  are  exploring  in  the  directions  of  the  axes  'of  the  error  ellip- 

soid,  to  a  distance  of  one u. A t  these  new  points  in  profile 

space,  we  evaluate  either y or  the  risk  function,  both  according 

to  the  linear  approximation  and  according  to  the  proper  expression 

given  in  Eq. (5). A comparison  of  the  two  values  will  give  a 

measure  of  the  nonlinearity  within  the  error  bounds  and  an  esti- 

mate of the  true  error  bounds. 

Using  this  technique,  we  can  distinguish  between  moderately 

nonlinear  and  grossly  nonlinear  problems.  This  should  be  done  in 

the  development  stages  of  an  inversion  method,  even  if  it  is  not 

done  when  the  method  is  in  operational  use. 

Similarly,  the  only  way  of  distinguishing  between  nearly 

linear  and  moderately  nonlinear  problems  is  to  try  a  linearization 

algorithm,  and  to  make  some  kind  of  quality  judgment  on  the  number 

of  iterations  required  for  convergence. 

VI. SEQUGNTIAL  ESTIMATION 

The  basic  concept  of  statistical  inversion  methods  is  one  of 

updating  information.  We  start  with  some a priori knowledge  of  a 

profile,  together  with  a  measure  of  uncertainty,  as  may  be 

expressed  in  a  covariance  matrix.  We  then  measure  something 

related  to  the  profile,  enabling  us  to  make  a  new,  updated 

estimate  of  the  profile,  and  an  updated  covariance  metrix. 

Once  this  simple  principle  has  been  grasped,  a  host  of  pos- 

sibilities  become  apparent. I will  briefly  describe  .three  of 

them. 

1. It  is  not  necessary  to  update  the  estimate  with  a  whole 

vector  of  observations  at  once.  The  measurements  can  be  included 

one  at  a  time  as  scalars.  The  updating  can  then  be  carried  out 

without  inverting  a  matrix,  because  the  estimation  Eqs. ( 3 )  and 

(4 )  can  be  manipulated  to  give 
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A s = sx - s K~(KS K~ + s 1 - l ~ ~  
% X% TI x Y % X  

If y is a scalar,  then S is a scalar  and K is a vector: thus, 
the  inverse  becomes a scalar  reciprocal.  After  updating  with  one 

component  of y, and f take  the  place  of  Sx  and x. for  the  next 

stage.  The  matrix  inverse  is  eliminated,  but,  in  fact,  the  total 

number  of  operations  is  similar so that  there  is  no  direct  compu- 

tational  advantage.  However,  if  the  order  in  which  the  data  is 

used  is  chosen  correctly,  problems  of  nonlinearity  can  be  reduced 

so that  the  number  of  iterations  is  reduced.  This is simply a 

matter  of  using  the  more  linear  measurements  first:  thus,  when 

the  time  comes  to  incorporate  the  nonlinear  measurements,  the  cur- 

rent  estimate  is  nearer  to  the  solution. 

Y 

2. We  can  make  use  of  the  horizontal  homogeneity  of  the 

atmosphere  in a very  simple  way.  If  we  have  inverted a profile  at 

position n, obtaining f and  in,  then  we  can  use  this  in  con  junc- 

tion  with  any  other  available  estimate  to  construct  the a p r i o r i  
n 

estimate  at  position n + 1. We  could,  for  example,  use a very 

simple  model  of  the  horizontal  behavior of the  atmosphere: 

'n + 1 
= gn + As 

where  (x 

climatology,and AS is a measure  of  the  horizontal  correlations. 

This  simple  model  is  something  like a random  walk  process.  The 

effect,  in  the  case  of  temperature  sounding  in  cloudy  cases,for 

example,  is  to  propagate  information  into a cloudy  region  from a sur- 

rounding  clear  region,  taking  proper  account  of  the  growing  uncer- 

tainty  as we go  further  from  the  clear  region. 

0 0 

n + 1 '  'n + 1 1 is  the a p r i o r i  estimate  at n + 1, j ;  is a 

3.  We  can, iri principle,  do a global  analysis  of  fields of 
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temperature  and  composition  using  sequential  estimation  and  updating 

the  whole  analysis  at  every  measurement  time.  In  practice,  the 

covariance  matrices  required  would  be  prohibitively  large.  However, 

we  can  use  the  principle  to  carry  out  two-dimensional  analyses  and 

then  combine  the  analyses  to  construct a three-dimensional  field. 

The  method  can  be  used  to  reconstruct  missing  measurements  or  to 

interpolate  objectively  on  to  synoptic  times. I will  describe  in 

some  detail  how  this  method  has  been  used  to  analyze  Nimbus 5 SCR 

radiances. 

Nimbus 5 is  in a near  polar  orbit,  and  the SCR measures  radi- 

ances  from  every  latitude  between 80 S and 80 N twice  each  orbit. 

We  assume  that  the  radiance  at  any  latitude  can  be  represented  by 

a Fourier  series  in  longitude  whose  coefficients  vary  with  time: 

0 0 

R(A,t) = R(t) + 1 an(t)cos(nA) + bn(t)sin(nX) 6 

1 
(8) 

where  R(A,t)  is  the  radiance  (or  other  quantity  to  be  analyzed) 

at  longitude X and  time t. R(t)  is  the  zonal  mean;an(t)  and  bn(t) 

are  the  Fourier  coefficients.  Six  wave  numbers  have  been  used  and 

.13  coefficients  are  given  because  the  satellite  has  13.4  orbits 

per  day:  thus,  on a time  scale of a day  resolution  of a finer 

structure  cannot  be  expected. 

- 

We  may  write Eq. (8) in a vector  product  form 

R(A,t) = K (A) X x(t) T 
I - 

where x is a column  vector  of  Fourier  coefficients,  and KT is a 
row  vector  of  sines  and  cosines.  We  operate  on  each  latitude 

independently.  At  time t we  make a measurement  of  R(A(tn),tn) 

at  some  longitude  X(tn).  'Let  us  call  that  measurement y ,  with 

error  variance a2. The  available a priori  information  at t is 

- 

n' 

n 
the  estimate  of  the  Fourier  coefficients  made  at  time t the n - 1' 
last  time a measurement  was  made  at  the  same  latitude.  Let  us 

call  this  estimate 2 . We  must  make  some  assumption  about  the 
statistics  of  the  time  evolution  of  the  Fourier  coefficients.  The 

n - i  
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simplest  assumption is a  random  walk, in-which case  the a' priori 

estimate  for  time  t is n 
xo = 2 
n n - 1  

where AS is a  measure 

time.  We  now  combine 

to  the  linear  version 

- t  1 AS n - 1  

of  the  increase  of  our  uncertainty  per  unit 

the  measurement  y  of K (Xn) x K(tn)  according 

of  Eqs. (6) and (7). 
n 

,. 0 - SOK (K~SOK + 02) K ~ S ~  T o  
'n - 'n n n   n n n  

- 

T o  -1 
fi = x0 + S°K (K S K + 02) (Yn - K x )  T o  n  n n n   n n n  

where  the  notation  has  been  simplified  in  an  obvious  way.  Note 

that  the  inverse  is  a  scalar  reciprocal, so that  the  arithmetic  to 

be  performed  at  each  stage  is  not  excessive.  If  a  measurement  is 

missing  at  time  t  then x and So are  the  best  estimate. 0 

n' n  n 

This  sequential  estimator  permits  an  estimate  of  the  time 

development  of  the  Fourier  coefficients x, and  ensures  knowledge 

of  the  accuracy  of  the  estimation.  It  can  be  used  to  interpolate 

missing  data  and  to  smooth  existing  data  in an objective  manner. 

(Incidentally,  the a priori  information  and  its  covariance  allows 

us to  detect  bad  data  by  means  of  a 3a test.)  We  can  also  use  it 

to  reconstruct  global  fields  at  synoptic  times,  simply  by  evalu- 

ating  the  Fourier  series  at  the  appropriate  times. 

As it  stands,  the  method  is  one  sided.  We  can  only  use  the 

measurements  which  precede  t  to  estimate  at  t . If  the  method  is 

being  used  operationally,  this  is  the  best  we  can do, because  the 

future  is  not  available  to  us.  In  this  case,  more  attention  should 

be  paid  to  the  "forecast"  from 2 to x (Eqs. 9 and 10) . 
However,  if  we  are  analyzing a long  run of data  for  research  pur- 

poses,  we  would  like  to  use  both  sides  of  the  time  axis.  This  can 

be  done  quite  easily  by  analyzing  the  data  backwards  in  time,  and 

n n 

0 

n - 1  n 
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combining  the  forwards  and  backwards  estimates  in  the  proper  sta- 

tistical  manner--by  using  the  reciprocal of the  covariance  as a 

weight. 

Figures 4 and 5 illustrate  the  effect of this  kind of esti- 

mator  in  reconstructing  missing  data  and  smoothing  existing  data, 

when  operating  on a time  series  of  measurements  about 10 days 

long  at a latitude  of 40°N. 

E 
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6o 50 940 5 ORBIT NUMBER 1073 

Fig .  4 .  Recons t ruc t ion   and   smoo th ing  of Nimbus 5 SCR chan- 

nel B 1 2  a t  40 N--a t y p i c a l   c a s e .  T h e  d a t a   p o i n t s   a r e   m a r k e d  D ;  

the r e c o n s t r u c t e d   d a t a  i s  a   c o n t i n u o u s  l ine.  
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F i g .  5 .  I l l u s t r a t i n g   r e c o n s t r u c t i o n  of a b o u t  I-% d a y s  of 

m i s s i n g   d a t a .  

VII. DISCUSSION 

A l l  the   previous  discussion i s  a spec ia l   case  of t he  Kalman 

f i l t e r  ( R e f .  3 ) ,  which i s  a par t icular ly   powerful  and general  

approach to   t he   ana lys i s  of mul t ivar ia te  time s e r i e s .  Some gen- 

e r a l i z a t i o n s  of  the  problem,  such as   the   case  where it is not   the 

p r o f i l e ,   b u t  some func t ion   of   the   p rof i le   (e .g . ,   th ickness)  which 

is of i n t e r e s t  have not been discussed. Problems  of t h i s   t ype   a r e  

a l s o  amenable t o  Kalman f i l t e r i n g .  
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SYMBOLS 

S 
Y 

$ 
A 

'n 
SO 
n + l  

t 

tn 
T 

X 

x x  
1 '  2 

A 

X 

.-. 
X n 
X 
0 

X 0  

P 

Y 

n + l  

'n 
AS 

E 

Four ie r   coef f ic ien ts  

known funct ion  of   the unknown p r o f i l e  

matr ix   denot ing  the  Frechet   der ivat ive aF/aX 

any  matr ix   sat isfying  the  re la t ion KK* = uni t   mat r ix  

value  of K a t  time t 

radiance 

zonal mean 

error covariance 

covariance matrix of x 

values  of 2 a t  pos i t ion  n 

a pr ior i  estimate  of S a t  pos i t ion  n + 1 

time 

time a t  n th   pos i t ion  

transpose  of a matrix 

parameters of F ( x )  

two independent  measurements  of x 

b e s t  estimate of x 

values  of x for   an   idea l ized  case 

i n i t i a l   v a l u e   o f  x 

a pr ior i  est imate  of 2 a t  pos i t ion  n + 1 

a priori  va lue   fo r   t he   p ro f i l e  x 

measured quant i ty  

measurement  of :<(X ) x K ( t n )  

measurement  of the   hor izonta l   cor re la t ions  

measurement error 

random vector  

longitude , 

nth  eigenvalue of the  solut ion  covariance 

s tandard  deviat ion 

standard  deviation  of 2 
error var iance 

s tandard  deviat ions for  x1  and  x2,  respectively 

%% 

n 

n 

n 

% n  % 

133 



REFERENCES 

1. C. D. Rodgers,  Retrieval of atmospheric temperature and 

composition from  remote measurements of thermal radiation, 

Rev. Geophys. Space Phys. 14, 609 (1976). 

2. R. Deutsch,  "Estimation Theory. I' Prentice Hall, Inc., 

Englewood Cliffs, New Jersey, 1964. 

3. R. E. Kalman, A new approach to  linear filtering and pre- 

diction problems, J. B a s i c  Eng. 820, 35 (1960). 

134 



DISCUSSION 

S u s s k i n d :  I just  wanted  to  ask  something  quickly  about  what  you 
have  just  done.  These  radiances--are  these  the  observed  radiances, 
or  the  radiances  taking  out  the  effects  of  clouds,  or  what? I 
mean,  if  you  have  clouds  coming  into  the  picture,it  is  certainly 
going'  to  foul  up. 

Rodgers:  These  are  actually  stratospheric  radiances. 

S u s s k i n d :  Okay, so you're  not  worrying  about  that. 

Rodgers :  This  isn't  the  Nimbus 5 selective  chopper.  It's  about 
45 kilometers. 

Green: On  your  first  slide,  you  said  "given  some  knowledge  of  a 
function."  Should  you  have  replaced  the  word  "function"  by 
"functional"? 

Rodgers :  Sorry,  yes,  it  is  functional. 

Green: Thus,  the  problem  is  how  to  get  a  function  from  a  func- 
tional. 

Rodgers:  I  was  just  not  being  quite  rigorous. 

Chahine: Clive,  you  made  a  statement  that  we  should  pay  just  as 
much  attention  to  our  actual  measurement  as  we  do  to  virtual 
measurements.  I  know  how  to  improve  my  actual  measurements.  I 
have  the  physics.  How  can  I  improve  my  virtual  measurements  and 
be  sure of that? 

Rodgers:  By  the  same  sort  of  techniques  as  your  actual  measure- 
ments.  If  you  have no virtual  measurements,  you  just  can't  solve 
the  problem.  You  just  have  to  go  into  some  other  problem.  The 
only  way  of  producing  a  profile  is  by  having  enough  virtual 
measurements  from  somewhere.  It  may  be  physics.  I  can  produce  a 
virtual  measurement  off  the  top  of  my  head  immediately.  I  can  say 
the  temperature  in  the  atmosphere  anywhere  is  going  to  lie  between 
zero  and 5000. I  know  it's  not  going  to  help  you  very  much;  it 
reduces  the  variance  a  bit.  It  just  makes  it  noninfinite at least. 
But  it  still  means  the  errors  on  all  the  points  are  going  to  be 
250°. 

Chahine: For  the  nonlinear  method,  I  assume  the  temperature  to  be 
positive  and  real.  But  in  your  case,  you  are  using a p r i o r i  sta- 
tistics. 

Rodgers :  This  isn't  only  statistics.  This  applies  to  any  kind  of 
virtual  measurement. 
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Chahine: Only  real  physical  data  should  be  used  to  judge  virtual 
data.  That's  because  of  the  high  variability  of  the  atmosphere 
and  clouds.  How  can  you  be  sure  that  the  virtual  measurements 
that  you  have  now  are  good  tomorrow or  are  good  in  the  presence  of 
a front? . 

Rodgers :  I don't  know.  But  in  the  method  you  described  you  have 
virtual  measurements  which  you  haven't  stated  explicitly  and  this 
is  your  interpolation  rule.  That's  virtual  measurement,  which  is 
a very  unrealistic  one  in  fact. 

Chahine:  Not  for  temperature.  Professor  Kaplan  might  like  to 
comment  on  the  assumption  of  constant  lapse  rate  between  two  levels 
in  the  atmosphere. 

Kaplan: That  is  assuming  you  know  where  the  lapse  rate  changes. 
And  anybody  who  has  worked  on  recording  radiosonde  measurement  of 
temperature  knows  that  the  temperature  can  increase  in  the  atmo- 
sphere  in  general  linear  with  height up  to  the  point  where  the 
lapse  rate  changes.  Of  course,  the  lapse  rate  changes  at  arbitrary 
levels  and  you  have  to  be  able  to  pick  the  point  at  which  this 
comes  in. I mean,  there  are  assumptions.  You  assume  if  you  pick 
the  height  at  which  you  attribute a frequency,  measurements  at a 
frequency,  this  is a point  at  which  the  lapse  rate  changes  or  you 
fit  to a polynomial.  But  there  are  these  constraints. 

Rodgers :  But  you  have  got  to  recognize  that  it  is a virtual 
measurement of some  kind,  with  some  variance. 

Kaplan: Yes,  and  to  the  extent  to  which  your  vertical  resolution 
gets  worse  as  you  get  larger,  this is more  and  more  an  error. As 
you  narrow  your  resolution  this  becomes  much  less  important. 

Chahine: Have  you  done  an  analysis  to  determine  how  often  you 
hit  and  how  often  you  miss? 

Rodgers :  What  do  you  mean? 

Chahine:  With  your  probability  approach,  how  often  do  you  end  up 
with  the  correct  answer  in  applying  your  technique  to  real  data? 

Rodgers :  Well,  this  doesn't  really  apply.  This  is  not  really 
within  the  scope  of  what I was  trying  to  describe. I wasn't 
going  into  techniques 0; how  you  find 8 ,  I was  going  into  tech- 
niques  of  how  you  find S. 

Chahine: I wanted  to  see,  in  applying  the  statistical  approach  to 
real  data,  how  often  you  hit? 

R o d g e r s :  You  mean how good can  your  statistics  be? 
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Chahine : Yes. 

Rodgers :  That's  another  question  which I haven't  really  tried  to 
touch  on  here. I know  it  is  very  difficult to get a priori infor- 
mation.  Statistics  is  only  one  way.  But  whatever  your a p r i o r i  
information  is,  you  have  to  work  on  it  as  hard  as  you  can. 

Wark: Have  you  ever  given  any  consideration  to  other  aspects of 
the  radiance  field?  Namely,  that  we  usually  try  to  solve  for  pro- 
files  as  though  they  existed  as  the  only  profile  in  nature,  and 
then  we  go  on  to  another  set  of  radiances  and  try  to  solve  them. 
In  addition  to  this,  we  have  gradients  which  exist  in  the  radiance 
field  and  these  gradients  are  very  strongly  tied  to  the  dynamics 
of  the  atmosphere.  That  is,  the  same  set of radiances  in  the  same 
location  at  the  same  time  of  year  can  be  associated  with  quite 
different  profiles,  mainly  because of the  gradients  which  occur, 
which  are  the  physical  dynamical  processes  in  the  atmosphere. 

Rodgers :  This  is  why I have  been  recently  getting  interested  in 
doing  global  analysis  of  radiances  to  try  and  make  an  estimate  of 
the  global  distribution  rather  than  individual  profiles. 

Wark: But  have  you  tried  to  associate  this  with  the  gradients  in 
the  temperature  field? 

Rodgers :  Not  yet.  My  feeling  about  analyzing  meteorological  data 
is  that  it  should  be  the  meteorological  analyst's  job,  not  ours. 
We  shouldn't  go  through  this  -interface  of  profiles  or  anything 
like  it.  We  should  get  him  good  calibrated  radiances.  He's 
already  doing  an  inverse  problem.  He's  solving'for  the  field  of 
whatever  it  is,  given  certain  measurements  of  something  different. 
Radiances  are  just  another  thing. 

Wark: That's  right.  We  should  be  giving  radiances  to  the 
meteorologists  and  let  them  inject  them  into  their  analyses. 

Chahine: What  you  are  asking  for  is  a  simultaneous  solution  of 
the  radiative  transfer  equation  and  the  equations  of  motions. 
This  is  a  great  aim.  It  isn't  easy. 

Wark: But I wanted  to  emphasize  the  point  that  the  solution  for 
profiles  is  not  necessarily  our  aim  here  in  a  meteorological 
sense. 

Rodgers :  Sure.  There  are  lots of things  you  can  get  out  of  this 
stuff  other  than  profiles. 

Malchow: A bit  of  a  detailed  question  about  your 2. In  non- 
linear  iterative  processes,  how  is  it  supposed  to  be  handled?  It 
seems  to  be  unstable  if  it  is  iterated  within  the  iterative  process. 
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Rodgers: It  certainly isn't  unstable. No. 

Malchow: I was  wondering  if  you  had  any  experience  with  that 
problem? 

Rodgers: Well, 6 is  trying  to  find  the  small  ellipsoid  in 
Figure 1 here.  Intuitively,  it  is-  not  going  to  be  unstable  pro- 
viding  you  have  got  the  right  kind of a priori information. If gx 
is  the  wrong  shape  compared  with  this  cylinder,  then  perhaps s 
is  going  to  stretch  way  up  the  cylinder.  It  is a matter  of  getting 
the  right  information  in  and  if  you've  got  enough infomation, s 
is  easy.  If S is  not  easy,  you  haven't  got  enough  information. 

Deirmendjian: This  is  not a question  but  just a comment.  Since 
this  is  an  interactive  Workshop,  may I interject  some  non- 
scientific  thoughts  about  Dr.  Rodgers'  introduction of the  word 
"aesthetics .I1 I like  it  because  "aesthetics"  derives  from a Greek 
verb  meaning  "to  perceive  with  the  senses."  It  is a scientist's 
prerogative  to  introduce--and  to  be  governed a little  by-- 
aesthetics  in  his  work.  This  implies  things  like  restraint,  non- 
exaggeration,  nonreliance  on  innumerable  assumptions,  criteria  or 
data  banks,  and so on. I would  like  to  make  an  analogy,  if I may, 
between  sailing,  about  which I know  some  things,  and  the  use  of 
mathematical  inversion  techniques,  about  which I know  very  little. 
Some  people  want  us  to  use  more  and  more  instruments  and  electronic 
gadgetry  which  are  supposed  to  help  us  sail  better,  on  the  assump- 
tion  that  we  have  no  senses--seeing,  hearing,  sensory  feeling-- 
or  judgment or "sea-sense." A good  sailor  does  use  all  these 
things  to  advantage  for a successful  voyage. So, in  analogy  to 
this, I feel  that  sometimes  we  tend  to  resort  to  inversion  tech- 
niques  too  blindly,  'without  using  our  judgment  or  "feel"  about 
handling a given  problem,  which  may  lead  to  "anti-aesthetic" 
excesses. ' 
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INVERSE  SOLUTION  OF  THE  PSEUDOSCALAR  TRANSFER 

EQUATION  THROUGH  NONLINEAR  MATRIX  INVERSION 

Jean I. F.  King 
A i r  Force G e o p h y s i c s   L a b o r a t o r y  

The u p w e l l i n g   r a d i a n c e   f r o m  a p l a n e - p a r a l l e l   p l a n e t a r y  
a tmosphere   v iewed either i n  a limb or f r e q u e n c y   s c a n   d e p e n d s  
on the i n t e r n a l   s c a t t e r i n g   a n d   t h e r m a l   s t a t e  o f  the atmo- 
s p h e r e .   E a c h   u p w e l l i n g   p r o f i l e  i s  the s o l u t i o n  o f  a u n i q u e l y  
s p e c i f i e d ,   b u t   g e n e r a l l y   u n k n o w n ,   p s e u d o s c a l a r   t r a n s f e r  
e q u a t i o n .  

N o n l i n e a r   m a t r i x  inversion o p e r a t o r s   h a v e  been devel- 
o p e d   w h i c h ,   a p p l i e d  t o  o b s e r v e d   r a d i a n c e s ,  i n f e r  maximal 
i n f o r m a t i o n   r e g a r d i n g   a t m o s p h e r i c   s c a t t e r i n g   p a r a m e t e r s   a n d  
v e r t i c a l   d i s t r i b u t i o n  o f  r a d i a n t   s o u r c e s   a n d  sinks. The 
a l g o r i t h h   h a s  the a t t r a c t i v e   f e a t u r e  o f  noise d i s c r i m i n a t i o n ,  
a t t r i b u t i n g   i n s t r u m e n t a l  errors t o  e x t r a - a t m o s p h e r i c   s o u r c e s .  

I. THE  MILNE  PROBLEM (.m MODE)  IN CODON  LANGUAGE 

Assume  the  upwelling  intensity  I(0,p)  to  be  exactly  repre- 

sentable  in LI = cos 8 space  by a linear  expression  and n - 1 
hyperbolic  components. 

Substituting  the  more  convenient  transform  variable 

K = sec 8 = l/p, w e  have 

The  positive  definite  character of I(0, I/K) requires  the 
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n 
= const II IIn - 1 H(~/K) 

i = l i   a = l  a K 1.1 K 

where  we  have  defined  the  H-function  as 

Again,  the  positive  definiteness of the  upwelling  intensity 

requires  the  polynomial  roots, K = - l/pi(i = 1,2,. . . ,n).,  to  be 
negative. 

The  quotient  polynomial  H-function  can  be  characterized  by 

its  sequence of roots  and  poles  along  the  real axis in  the  trans- 

form plane.  We  shall  call  such a linear  array a codon. The 

importance  of  this  representation  lies  in  the  fact,  as  we  shall 

see,  that  all  the  radiation  physics  is  implicit  in  the  codon  root- 

pole  morphology. 

Using-partial  fraction  analysis,  we  are  able  to  express  the 

coefficients of the  upwelling  intensity  expansion as residues (or 

pole-strengths)  of  the  H-function codon at the poles K = - K . 
Thus,  we  find  from  Eqs. ( 3 )  and (4 )  

CL 

= const [- K2 K a = l  K + K  a 
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where  the  residues 

f a  

and 

The  Q-constant,  the  residue  of  the  double  pole  at  the  origin,  is 

evaluated  after  some  algebra  as 

11. CODON TRANSFER  THEORY 

The  upwelling  profile  can  be  considered  the  externally 

sensed  solution  of  an  internal  transfer  problem.  We  proceed  now 

to  construct,  i.e.,  to  infer,  the  unique  transfer  equation, 

source  function,  constitutive  relation,  and  characteristic  func- 

tion  which  are  implied  by  the  observed  intensity. 

We  need  first  an  equation  of  transfer.  Now  the  transfer 

equation  can  be  viewed  as a conservation  condition  imposed  on  the 

intensity  under  steady-state.  We  shall  show  that  the  transfer 

equation  has a deeper  origin  as a codon  identity  in  transform 

space. 

From Eq. (2) we  see  that  the a component  of  the  upwelling 

intensity  obeys  the s p l i t   c o d o n   i d e n t i t y  

K + Ka 
K + Ka K + K  

= 1  
a 

Let  us  consider  this  identity  as a codon  operator,  viz. 
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and  seek  the  internal  (scalar)  T-space  eigenfunction  which  con- 

verts  this  codon  equation  into  the  equation of transfer. 

By  defining  the  internal  (vector)  intensity  by 

we  see  by  inspection  that  the  required  eigenfunction form' is 

-K T 
J (T) = L e 
c1 c1 

c1 

for  then  we  have  the  equation of transfer 

We  note  in  passing  from E q s .  (2)  and (11) that  the  eigenfunction 

J (T)  is  the  inverse  Laplace  transform of the  upwelling  intensity 

= const T,+ Q + 1, = I , 
Equation (121, as  it  stands,  is  a  relation  between  the  two 

dependent  variables  I(T, 1/~) and J ( T ) .  To eliminate  one  of 

these,  a  second  or  constitutive  relation  is  needed.  This 

expresses  the  source  function,  the  radiation  emitted  at  level T 

in  the  direction 0 = cos 'p, as  the sum of radiation  incident  in 

all  directions  which  is  scattered  into 8 ,  viz. 

- 

For  local  thermodynamic  equilibrium,  the  source  emission  is 

uncorrelated  with  the  directions of the  incident  beams 

8 '  = cos p', in  which  event -1 
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so that  the  eigenfunction  becomes  the  source  function 

We  can  write,  therefore,  as  the integro-differential  equation of 

transfer 

The  finite  exponential sum character  of  Eq. (13 )  demands  that 

the  source  function J (T)  be  compounded  of  radiation  restricted  to 

a  finite  number  of  fixed  directions.  This  is  mathematically 

accommodated  by  expressing  the  characteristic  function  as  a  finite 

delta-function sum, i.e., 

Equation (18) implies  that  the  characteristic  function  acts  as  a 

filter  and  permits  only  the  beams  in  the  directions p = 1-I = f pi 

to  participate  in  the  source  function.  The  ID  transfer  equation 

then  becomes 

j 

The  determination  of  the  strength  and  direction  of  the  inci- 

dent  beams  is  facilitated  by  taking  the  derivative of the  con- 

stitutive  relation 

Substituting  from E q s .  (10) and (13),  we  can  write 
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The  constant  terms  are  equal  in  the  conservative  case - 1 Qi = 1. 

Interchanging  the  order of summation  leads  to 

1 
2 

which  in  turn  requires 

where  we  have  assumed 1.1 = - 1 . 1 ~  and Qmi = Qi . -i 
We  shall  now  demonstrate  that Qi is the  residue  of  reciprocal 

H-functions.  Consider  the  bilaterally  symmetric  T-function 

defined by 

Clearly, we have €or K = - + Ka 

which  shows  that  the  T-function  satisfies  the  requirement  of 

Eq. ( 2 3 ) .  

The  strength of the  beam  at 1.1 = 1 ~ .  is given  now  as  the i 
residue  of  the  reciprocal  H-functions 
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The  deep  reciprocity  inherent  in  the  codon  formulation  of 

a i' the  radiative  transfer  problem  is  seen  by  comparing L and $ 

J ( T )  = const -c + Q + 1" [ a = 1  - c1 

are  identified  as  residues  at  the  poles  of  the  H-function  codon, 

from Eq. (6), namely, 

In  contrast,  the  weights  of  the  filter  function $ which  enter 

the  constitutive  relation,  from Eq. (19),  namely, 
i 

are  residues  at  the  poles  of  the reciprocal paired  H-function 

codons 

It  is  further  seen  that a knowledge  of  the  codon  structure, i.e., 

its  roots  and  poles,  serves  to  specify  all  the  radiation  functions 

and  parameters of the  problem.  The  codon  concept  shifts  the 
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emphasis  and  changes  the  character of transfer  theory.  Rather 

than  seeking  the  solution  for a particular  radiation  parameter, 

one  develops  algorithms  for  determining  the  underlying  codon 

structure  from  the  given  data.  Thus,  in  the forward problem  in 

which  the  internal  scattering  characteristic  function $ ( V I  is 
known,  Gaussian  quadrature  is  used  to  determine  the  weights $ 

and  directions p These  determine,  in  turn,  the  constants Ka and 

L and  thus  the  upwelling  intensity.  On  the  other  hand,  in  the 

inverse problem  we  must  construct  the  codon  structure  from  the 

observed  upwelling  intensity  profile.  This  requires a nonlinear 

matrix  inversion  algorithm,  developed  by  the  author  (Ref.  l), 

which  solves  uniquely  and  exactly  the  following  problem:  Given 

2n  upwelling  intensities  I, = I (0 ,  p,) sensed  at  the  arbitrary 

i 

i' 

a 

J J 
nadir  angles 8 = cos -' (j = 0,1,. . . , 2n - 1) , find  the  unique 

j "j 
2n  constants C, Q, and  the n - 1 pairs (La, Ka), which  are  speci- 
fied  by  the  measurements.  This  is  equivalent  to  the  inversion  of 

the  following  nonlinear  equation  set 

1 = c [ u j + Q + l a = ,  n - 1  
j 1 , j = 0,1, ..., 2n - 1 (28) 

The  Planck  intensity  source  function  follows  readily  from Eq. (13); 

namely , 

The  inference  of  the  internal  scattering 

(29) 

parameters  becomes a 

mere  evaluation of u and $i from  the  inferred  constants L i a' Ka- 

111.  SUMMARY,  GENERALIZATION, AND PROSPECTUS 

In  this  paper,  we  have  discovered  three  features:  first, 

that  underlying  the  interaction  of  radiation  and  matter,  i-e., 

radiative  transfer  theory,  is a simple  code;  second,  that  the 

code  consists  of  linear  arrays  of  roots  and  poles  along  an  axis 

in a complex  transform  space  (which  we  have  called  "codons") ; and 
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third,  that  the  code  translates  easily  into  observable  and  infer- 

able  radiation  parameters.  Stated  succinctly,  we  have  found a 

code,  we  have  determined  its  structure,  and  we  have  broken  the 

code. 

In assessing  the  importance  and  implications  of  this  work, 

we  must  set  forth  how  transfer  theory  differs  from  conventional 

differential  analysis.  The  specification of density  distributions 

is  of  great  interest  in  physics,  for  example,  the  fluid  density 

in  the  Euler-Lagrange  equation  or  the  +-probability  density  in 

SchrGdinger  wave  mechanics. In these  and  other  cases,  the  den- 

sities,  specified  as  solutions  of  partial  differential  equations, 

are  considered  primal  and,  hence,  not  further  analyzable  into  more 

basic  component  parts.  In  contrast,  the  transfer  equation  through 

its  linkage  between  two  spaces  relates  the  source  function,  and 

energy  density,  to  the  solution  of  an  integro-differential 

equation.  In  this  relation,  the  density J ( T )  is  analyzed  and 

dissected  as  the  discrete sum of  a  more  primitive  concept,  the 

beam  field  I(T; u , K )  quantized  in  the  directions 1-1 and  e-folding 

lengths Kc,’. 
i 

We  have  seen  that  the  physics  of  the  generalized  transfer 

problem  is  completely  determined  by  the  root-pole  morphology  of 

the  codon.  Further,  the  alternate  root-pole  structure  along  the 

negative  real  axis  of  the  H-codon  in  classical  theory is a  rela- 

tively  restricted  grouping.  It  is  natural  to  inquire  into  the 

physical  systems  implied  by  more  general  codon  patterns. 

We  find  that  there  are  codon  identities  other  than  the 

linear  expression,  Eq. (8), which  can  generate  transfer  equations. 

In  particular,  the  quadratic  identity  can  be  used  to  generate  a 

wave  transfer  equation.  The  Planck  intensity,  derived  from  first 

principles,  is  such  an  example.  We  may  ask  what  is  the  condition 

for  the  source  function  to  obey  a  differential  equation?  We  find 

this  occursif,andonly if,  the  associated  codon  exhibits  the  group 

property  of  invariance  under  displacement.  This,  in  turn,  occurs 
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if, and   on ly   i f , the  codon roots and poles are equal ly  spaced. We 

are ab le  t o  express a l l  the  f inite  polynomials  (Legendre,   Laguerre,  

Hermite, Jacobi) enkering  into  the  $-funct ions  of  simple quantum 

systems as inverse  of  such  equally  spaced  (canonical)  codons 

(Ref. 2 ) .  F ina l ly ,  it proves  possible  to  i n f e r   t h e   r e l a t i v i s t i c  

radial  (Dirac) wave equation as the   i nve r se  of a split quadrat ic  

codon equation. 

SYMBOLS 

J 

K 

La 

Q 
T 

a, i 

K 

Planck  intensity  source  function 

H-function  residue a t  o r i g i n  

discrete  ordinate  H-function  of  Chandrasekhar 

r a d i a n t   i n t e n s i t y  a t  opt ica l   depth  T a t  an  angle 

8 = cos P with   the   zen i th  
-1 

source  funct ion 

reciprocal e-folding  depth of r ad ian t  beam 

coupling  constant  between  the  forcing  function  and the 

Ka medium modes 

Q = q ( m ) ,  where q ( T )  is  the  Hopf q-constant 

d i scre te   o rd ina te   T- func t ion  of Chandrasekhar 

d m y  va r i ab le s   spec i fy ing   pa r t i cu la r   va lues  of K and 

u, respec t ive ly  

independent  variable  specifying  the complex transform 

plane 

cha rac t e r i s t i c   func t ion  
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DISCUSSIONS 

Green: You used  quantum  mechanics as an  illustration  for  your 
problem.  In  most  applications  of  quantum  mechanics,  the 
SchrBdinger  equation  or  the  Dirac  equation  does  not  serve  as  the 
goal  of  the  search.  For  example,  in  the  nuclear  force  problem, 
you  can  assume  that  the  SchrBdinger  equation  or  the  Dirac  equation 
is  a  basic  law  of  nature  or  the  basic  equation  of  motion  and you 
might  be  attempting  from  scattering  data,  experimental  accelerator 
data,  to  infer  a  basic  law  force so that  the  SchrSdinger  equation 
or  the  Dirac  equation  has  the  same  role  as  the  radiative'transfer 
equation  and  the  scattering  data  has  the  role  of  some  experimental 
observation  from  which  you  hope  to  find  a  basic  nuclear  force  or 
atomic  force.  Thus,  it  seems  that  if  in  your  analogy of your  codons 
you  arrive  at  the  SchrSdinger  equation  or  the  Dirac  equation  you 
do  not  have  a  parallelism  to  the  real  world  use  of  the  SchrSdinger 
equation  or  the  Dirac  equation  as  something  which  connects  scat- 
tering  observations  to  some  physical  aspect  of  the  description  of 
your  system.  Which  is  the  law  of  force  governing  your  system 
which  you  would  then  insert  into  the  SchrSdinger  equation? 

King:  Let  me  try  to  answer  that.  Perhaps  our  conventional  view 
of  the  SchrBdinger  and  Dirac  equations  needs  reassessing.  Let  us 
think  generally. A codon  identity  quite  literally  is  a  separation 
of  unity  into  two  or  more  parts.  The  radiative  transfer  equation 
is  the  transcription  into  our  space of this  codon  separation.  The 
radiative  heat  exchange  represents  the  flow  resulting  from  this 
nonequilibrium  partition  arising  from  the  nonisothemaltemperature 
distribution.  The  SchrBdinger  and  Dirac  equations  may  be  similarly 
viewed  as  representing  unequal  partitioning  of  the  Psi-function, 
concentrated  in  regions  of  high  electron  expectancy  and  dilute 
elsewhere.  At  a  deeper  level,  this  separation  is  represented  in 
the  Dirac  equation  by  a  triply  split  codon  identity.  This  identi- 
fication of the  Dirac  equation  as  an  inverse  codon  identity  has 
the  important  conceptual  consequence  that  nature,  at  least  in  the 
radial  Dirac  equation  describing  the  Kepler  atom,  is  contrained  by 
a l a w  of form, rather  than  a  law  of  force. 

U n i d e n t i f i e d   S p e a k e r :  Could  you  predict  something  that  isn't 
known? 

King:  Yes.  At  present  no  theory  or  model  exists  for  the  fine 
structure  constant.  It  currently  enters  into  field  theory  as  an 
ad hoc, empirically  determined,  externally  imposed  coupling  con- 
stant  between  the  electromagnetic  field  and  the  electron. I hope 
to  model  the  fine  structure  constant  as  a  codon  counting  algorithm 
involving  the  harmonic  sum of codon  poles. 

Irvine: I am  a  little  bit  perplexed  at  your  unhappiness  with  the 
transfer  equation,  Jean.  You  say  there  are  ambiguities  in  it,  but 

150 



t h a t  i s  t r u e  of a l l  physics.   In  every  physical   equation we are 
making a mathematical  approximation t o  r e a l i t y .  The best   des-  
c r i p t i o n  of r ad ia t ion  we  th ink  w e  have now would be  quantum f i e l d  
theory. O f  course,   there  are a spec t s   o f   t ha t   t ha t  are not   p resent  
i n  M a x w e l l ' s  equat ions.   Likewise,   in   the  t ransfer   equat ion,  w e  
are negelcting  information  which is  present i n  Maxwell's equations. 

King:  Y e s ,  I agree  with you. What I should  have  said w a s  that a 
l inear   t ransfer   equa t ion  is  sa t i s f i ed   on ly  by exponential-type 
source  funct ions.   In   other   words,   only  res t r ic ted classes of 
source   func t ions   sa t i s fy   the   l inear   t ransfer   equa t ion .  W e  agree 
t o   t h a t .  

Irvine: You also  expressed  unhappiness  about  the fact  t h a t  one 
uses a loca l  thermodynamic equilibrium  approximation  for  the  source 
function. Of cour se ,   t ha t  is not  necessary.   That is  simply 
because w e  are ignoring  any  possible  information  on  the  micro- 
physics a t  a given  point.  

T w i t t y :  I guess I am either  missing  something  or I don't  under- 
s t and   t h i s   r e l a t ionsh ip  between the  codons  and the  equat ions you 
have derived.  There are a n   i n f i n i t e   s e t  of  equatio.ns you could 
write down t h a t  are i d e n t i t i e s ,  and  one  could  do  these  kind  of 
transforms on a l l  of  those and  produce some i n f i n i t e   s e t  of d i f -  
fe ren t ia l   equa t ions  which hopefully would not  describe  anything 
w e  know about  physics. What is  so special   about  the  ones you have 
derived? 

King:  The spec ia l   f ea tu re  i s  tha t   t he   t r ans fe r   equa t ion  i s  the  
only  inverse  statement of a l i n e a r  codon iden t i ty .  And I would 
say  that   quadrat ic  codon iden t i t i e s   l ead   t o   s inuso ida l   sou rce  
funct ions and quadrat ic   t ransfer   equat ions.  

T w i t t y :  But  then  the  Dirac  equation  looks  far more complicated. 

King:  I t  is  still a wave equation. 

T w i t t y :  No, I am not   re fe r r ing   to   the   Di rac   equat ion .  Your 
i d e n t i t y   t h a t   g i v e s  it i s  f a r  more complicated. 

King:  Y e s ,  the   reason   for   tha t  i s  the   addi t iona l   cons t ra in t  which 
codons  must  obey i n  quantum  mechanics. The d i f f e ren t i a l   equa t ion  
format  of wave mechanics demands t h a t   t h e   r o o t s  and  poles of t h e  
corresponding  codons in  the  transform  plane  be  equally  spaced. 
These  codon pa t te rns   assoc ia ted   wi th   var ious  quantum systems are 
developed in   t he   pape r   c i t ed .  

T w i t t y :  So it seems t o  m e  t h a t  somewhere i n   t h i s   i d e n t i t y ,  mathe- 
matical i d e n t i t y  is what you ' re   real ly   ta lking  about ,   there  i s  t h e  
basic   physics  and you have  used some addi t iona l  knowledge about 
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the  physics  to  say  that  this  identity  corresponds  to  what  we  know 
in  terms of the  wave  equation  describing  the  problem. 

King:  Yes.  That  requirement  is  that  the  Psi-function  codon  be 
invariant  under  translation in the  transform  plane.  This  invari- 
ance,  in  turn,  demands  equally  spaced  roots  and  poles,  namely, 
canonical  codons,  for  superposition. 

F y m a t :  I have a question  and a comment.  The  question  is:  Have 
you  carried  on  this  work  for  the  case  of  scattering  and  with  con- 
tributions  from  single  and  multiple  scattering  in  the  source 
f unction? 

King:  No, I have  not.  The  formalism  appears  indifferent  to 
whether  or  not  the  impinging  photon  is  singly-  or  multiply-scattered. 
Perhaps  this  is  not a disadvantage  inasmuch  as  it  is  difficult  to 
conceive  any  measurement  which  would  discriminate  between  the  two. 

F y m a t  : %'he comment  is  that  in  his  book,  Professor  van  de  Hulst 
has  emphasized  that  we  should  use  what  he  called  the  scattering 
amplitude  matrix, a 2 x 2 matrix  which  contains  information  both 
on  the  amplitude  and  the  phase  of  the  wave.  He  carried  the  theory 
only  for  single  scattering.  On  the  other  hand,  Fano  has  shown  the 
analogy  between  this  treatment  and  quantum  mechanics.  Dr.  Vasudevan 
and  myself  have  pursued  this  analogy  further  in a paper  we  have 
recently  published.2  This  article  provides  the  complete  theory  of 
multiple  scattering  for  both  amplitude  and  phase  by  exploi'ting  the 
close  analogy  between  the  quantum  mechanical  states  of  half-spin 
systems  and  the  polarization.  states  of  electromagnetic  radiation. 
The  interest of this  new formdation is  that it enables  you  to 
carry  the  multiple  scattering  with  the  phase  information.  Although 
we  are  not  observing  the  phase  in  the  visible,  this  is  possible  in 
other  regions of the  spectrum.  The  phase  also  contains 

1 

1. Dr. Fymat's  post-Workshop  comment: "I did  not  say  that  the 
scatterer  molecule  or  particle  conserved  any  memory  of  the  scat- 
tering  order.  Rather, I was  concerned  with  the  formalism  that 
your  codon  approach  would.take  had  you  considered a particular 
scattering  process  and  the  consequent  polarization it induces  in 
the  radiation  field.  Here,  the  radiative  transfer  equation  would 
become  four-dimensional  (using,  for  example,  Stoke, ' representation 
of  the  polarization  state),  and  the  source-function  would  be  far 
more  complicated  than  Planck's  function  as  it Whil receive  con- 
tributions  from  both  single  and  multiple  scattering." 

2Published  in  Astrophysics  and  Space  Science,  Vol. 38, 
pp.  95-124,  1975. 
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information  about the atmosphere. I thought  you might wish to use 
this work were you  interested in extending  your  codon approach to 
scattering and  polarization. 

King: Yes, I see. A l l  of these methods must  ultimately rest on 
some conservation principle. 
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BACKUS-GILBERT  THEORY AND ITS APPLICATION 

TO  RETRIEVAL OF OZONE AND 

TEMPERATURE PROFILES 

B a r n e y  J. C o n r a t h  
Goddard   Space   Fl ight  Center 

T h e  a n a l y t i c a l   m e t h o d s   o f   B a c k u s   a n d  Gilbert were o r i g -  
i n a l l y   f o r m u l a t e d  for  a p p l i c a t i o n  t o  inverse prob lems   a s so -  
c i a t e d  w i t h  the p h y s i c s  o f  the solid e a r t h .  However, the 
t h e o r y  i s  s u f f i c i e n t l y   g e n e r a l  t o  be a p p l i c a b l e  t o  many t y p e s  
o f  inverse p r o b l e m s ,   a n d ,  i n  p a r t i c u l a r ,   c o n s t i t u t e s  a u s e -  
f u l  tool f o r  a n a l y z i n g  the i n f o r m a t i o n  content o f  a t m o s p h e r i c  
p r o f i l e   r e t r i e v a l s .   B a s i c a l l y ,  the method p r o v i d e s  a q u a n t i -  
t a t i v e   e v a l u a t i o n  o f  the t r a d e - o f f  between v e r t i c a l   r e s o l u t i o n  
o f  a retrieved p r o f i l e  and  formal   root-mean-square ( r m s )  error 
due  t o  measurement  noise p r o p a g a t i o n .  A s  one example  o f  a n  
a p p l i c a t i o n  o f  the theory,  the prob lem o f  r e t r i e v i n g  the t o p -  
s ide ozone p r o f i l e   f r o m   b a c k s c a t t e r e d   u l t r a v i o l e t  (BUV) 
measurements  i s  considered. F o r  measurements  o f  the t y p e  
c u r r e n t l y   b e i n g   o b t a i n e d   w i t h  the Nimbus 4 and AE-E BUV e x p e r i -  
ments, it i s  f o u n d   t h a t  a v e r t i c a l   r e s o l u t i o n  o f  a p p r o x i m a t e l y  
0.75 s c a l e   h e i g h t   c a n  be a c h i e v e d  for  a f o r m a l   v o l u m e   m i x i n g  
r a t i o   p r o f i l e  error o f  10%. Other e x a m p l e s   i n c l u d e   t r e a t m e n t s  
o f  the r e t r i e v a l   o f   t e m p e r a t u r e   p r o f i l e s   f r o m   m e a s u r e m e n t s  i n  
the 15  vm Cog a b s o r p t i o n   b a n d  f o r  both the t e r r e s t r i a l  and 
M a r t i a n   a t m o s p h e r e s .   F i n a l l y ,  the method i s  a p p l i e d  t o  the 
prob lem o f  r e t r i e v i n g   t e m p e r a t u r e   p r o f i l e s   o f  the J o v i a n  
p l a n e t s   f r o m   m e a s u r e m e n t s  i n  the f a r   i n f r a r e d   p r e s s u r e   i n d u c e d  
H2 l ines  t o  be o b t a i n e d   f r o m  the M a r i n e r   J u p i t e r / S a t u r n   f l y - b y  
m i s s i o n s .  In  the l a t t e r   e x a m p l e ,  the r e s u l t s  o f  the Backus- 
Gilbert a n a l y s i s   a r e  compared w i t h   a n   a n a l y s i s   b y   G a u t i e r  and 
Revah,   based  on m o r e   c o n v e n t i o n a l   i n f o r m a t i o n   t h e o r y  tech- 
n i q u e s .  
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I. INTRODUCTION 

The method of Backus  and Gilbert w a s  o r ig ina l ly   deve loped   for  

application  to  inverse  problems  encountered  in  the  physics  of  the 

so l id   ea r th .  The theory w a s  formulated  primarily from a physical  

po in t  of view i n  a series of three  papers  by Backus  and Gi lber t  

(Refs. 1, 2 ,  and 3 )  and  summarized within a more formal framework by 

Backus  (Ref. 4). In   addi t ion   to   p rovid ing   an   invers ion   a lgor i thm,  

t h e  method also  provides   diagnost ic   information which can  be  used 

in   assess ing  the value of  a given set of  measurements.  Although the  

o r ig ina l   app l i ca t ions  were in   the  f ie ld   of   seismology,   the  theory 

i s  qui te   genera l  and can  be  readily  applied  to  inversion  problems 

encountered  in  atmospheric  physics. Examples of  such  applications 

include  those of  Conrath  (Ref.  5) , Westwater  and Cohen ( R e f .  6) , 
Fleming  (Ref. 7 ) ,  Wang ( R e f .  8), and Rodgers ( R e f .  9) .  

In   the  present   paper ,  a review  of  the method a s   app l i ed   t o  

p ro f i l e   r e t r i eva l   i n   p l ane ta ry   a tmosphe res  i s  given. The basic  

theory i s  discussed,  and ce r t a in   a spec t s  are i l l u s t r a t ed   t h rough  

the  use of  examples.  This  review w i l l  be followed by the  presen- 

t a t i o n  of r e s u l t s  of a recent   appl ica t ion  of t h e  method t o   t h e  

problem  of r e t r i ev ing   h igh   l eve l  ozone p r o f i l e s  from s a t e l l i t e  

measurements  of  back-scattered  ,ultraviolet   radiation.  Finally,  

appl icat ions  to   problems of   t empera ture   p rof i le   re t r ieva l  from 

remote  infrared  measurements  of  the  earth's  atmosphere as w e l l  as 

the  atmospheres  of Mars, J u p i t e r ,  and  Uranus are considered.  In 

the   ca se   o f   Jup i t e r ,   r e su l t s  are compared with  those  obtained by 

Gautier and  Revah (Ref. 10)  who employed a d i f f e r e n t   t h e o r e t i c a l  

approach. 

. 

11. THEORY 

Bas ica l ly ,   the  method of Backus  and Gilbekt treats a general  

set  of   in tegra l   equa t ions   o f   the  form 

g i  = I Ki(z). f (z )  dz i =  1, 2,  ... m (1) 



It  is  assumed  that  there  exist  measurements  of  the  quantities g 

and  that  the  K.(z)  are  known  functions  of  the  independent  variable 

z .  The  problem  is  to  infer  information  on  the  unknown  function 

f(z).  In  the  applications  considered  in  this  paper,  the  gi  are 

generally  related  to  radiance  measurements  the  kernels  Ki(z) 

are  determined  by  the  radiative  transfer  process  (scattering, 

i 

1 

absorption,  etc.),  f(z)  is  an  atmospheric  profile,  and z is  some 

measure  of  height  within  the  atmosphere. 

The  finite  number  of'kernels  K.(z) do not  constitute a com- 
1 

plete  set,  in  general, so it  is  not  possible  to  obtain  an  exact 

specification  of  f(z)  from  measurements  of  gi.  Nevertheless,  it 

still  may  be  possible  to  specify  certain  useful  properties  of  f(z) 

from  the  available  measurements.  Let 2 ( z )  be  an  integral  pro- 

perty  of  the  profile  associated  with  level z ,  and  assume  it  is  to 

be  obtained  by a linear  estimate  of  the  form 

m 

where  the  z-dependent  coefficients  a.(z)  are  determined  by  the 

inversion  method  chosen. A relation  between s ( z )  and f (z) is 

obtained  by  substituting Eq. (1) into Eq. (2 )  , i.e., 

1 

i(z) = A(z, z ' )  f (z')dz' ( 3 )  

where 

m 

Thus,  the  nature  of  the  estimate 2 (z) is  controlled  by  the  behavior 
ofA(z, Z'), usually  called  the  averaging  kernel.  The  essence  of 

the  Backus-Gilbert  method  is  to  attempt  to  control  the  shape  of 

A ( z ,  z ' )  through  the  choice  of  the  coefficients  ai(z).  Originally, 

effort  was  directed  primarily  toward  making A ( z ,  z ' )  resemble a 

delta  function  as  nearly  as a given  set  K.(z)  would  permit.  In 

other  words,  the  goal  was  to  achieve i:; some  sense  the  best 
1 



resolution  possible.  However,  there  are  some  applications  for 

which  it  is  desirable  to  force A ( z ,  z') toward  some  other  pre- 
determined  shape. . For  example,  it  may  be  required  that z ( z )  

approximate a uniformly  weighted  average  of  f(z)  over  some  range 

of  the  independent  variable  centered  on z, in  which  case A ( z ,  z') 
should  be  made  to  approximate  a  rectangular  function.  In  any  event, 

one  approach  to  controlling  the  shape of A ( z ,  2') is to  choose  the 

coefficients  a.(z)  such  that  they  minimize  some  quadratic  form  for 

each  value of z, €or  example, 
1 

where  the  weight J ( z ,  2 ' )  and  the  function D ( z ,  z ' )  are  chosen  to 

produce  the  desired  behavior  in  A(z, z ' ) .  

Another  aspect of the  problem  which  must  be  considered  is 

measurement  noise.  Any  measurements  of  g  will  have  associated 

with  them  errors  of  unknown  magnitude.  However,  if  the  statistical 

properties of the  measurement  errors  are  known,  the  resulting  sta- 

tistical  properties of the  errors  in g ( ~ )  can  be  found.  By  assuming 

that  the  measurements  possess  zero  mean  error  and  have  an  error 

covariance  matrix E, it  is  easily  shown  that a,., the  error  vari- 
ance  in €, is  given  by 

i 

2 
f 

where a ( z )  is the  column  vector  of  coefficients  a.(z),  and  the 

superscript  T  denotes  matrix  transposition.  From  the  point  of 

view of controlling  the  propagation of measurement  noise,  it  is 

desirable  to  choose  the  coefficients a. ( z )  such  that 0,. (z) is 
minimized  at  each  level z .  However,  it  is  not  possible,  in  general, 

to  minimize  both Q ( z )  and a - ( z )  simultaneously;  therefore,  a  com- 

promise  is  reached  by  minimizing  a  linear  combination.  This 

relationship  can  be  written  as 

1 

2 
1 f 

2 
f 
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I 

where  the  factor r ensures  that  both  terms  have  the  same  physical 

dimensions. By varying  the  weight  w,  emphasis  can  be  shifted  from 

minimizing  the  error  to  maximizing  control  over  the  shape  of 

A ( z ,  2'). Thus,  there  is a tradeoff  between  the  two  considerations, 

and  the  best  choice  for w must  be  determined  by  the  nature  of  the 

particular  application. 

The  value  of g ( z )  which  minimizes R ( z )  can  be  readily  calcu- 

lated;  as a result,  an  expression  for i(z) of  this  form  is  obtained 

L 
where 

V . ' ( z )  = JKi(z')D(z, z ' ) J ( z ,  z')dz' (9) 
1 

and 

An interesting  special  case  of  this  form  of  solution  results  when 

J ( Z ,  2') = 1 for  all z and z ' ,  and D ( z ,  z') = 6 ( z  - 2 ' ) .  Then 

and 

Thus, Eq. ( 8 )  has  the  form  of  the  "miniman  information"  solution 

(Ref. 11) for  the  continuous  case 

where 

Thus,  viewed  from  within  the  framework  of  Backus-Gilbert  theory, 

the  minimum  information  solution  is  that  solution  for  which  the 

averaging  kernel  lies  closest  to a delta  function  subject  to a 

159 



cons t r a in t  on error propagation  controlled by the   va lue   o f  y.  

Note t h a t  for  the   genera l  form of Eq. (81, the   mat r ix  t o  be 

inver ted  is a function  of z so a matr ix   inversion i s  r equ i r ed   fo r  

each  value  of z considered. However, i n   t h e  special case when 

J ( z ,  z') i s  independent of z, a s ingle   mat r ix   invers ion  is  

requ i r ed   fo r  a l l  values  of z. This  may be a nont r iv ia l   po in t   o f  

consideration when an  inversion method i s  being  chosen for  pro- 

cessing a la rge   quant i ty  of data. 

A second form of Q(z)  which  has  been  used  extensively is that  

obtained  with 

D(z, z') = 6 ( z  - z ' )  and J ( z ,   z ' )  = 1 2 ( 2  - z ' I 2  

T h i s  form gene ra l ly   r e su l t s   i n   an   ave rag ing   ke rne l   w i th  a broader 

c e n t r a l  peak b u t  smaller s idelobes compared w i t h  the  averaging ker -  

nel   obtained by u s i n g   J ( z ,   z ' )  = 1. This  choice  from Eq. (5)  

y i e lds  

Q ( z )  S S ( Z )  = 12 1 (Z - z ' ) ~ A ~ ( z ,  z')dz' (14) 

where s ( z )  is  called the "spread." It has u n i t s  of z and is  a 

measure  of  the  spread  of A ( z ,  z ' )   a b o u t   z '  = z.  The unusual 

normalizing  factor 1 2  i s  chosen so a rectangular  A of u n i t  area 

has a value  of s equal t o  i t s  width. Although t h i s  choice is  q u i t e  

a r b i t r a r y ,  it can be demonstrated  that s i s - a  good approximation 

to  the  usual  measures  of  the  widths of other well-known functions.  

Some examples are: 
c 

(a)  Gaussian 

A(z) = - e 1 - z2/2b2 

2 JIT 

(b) Triangular 
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s = 1.2 x 2b 

(c)  Lorentzian 

1 b 

r z2 + b2 
A(z) = 

s = - x 2b = 0.95 x 2b 3 
li 

where  b  is  the  half-width at half-maximum.  Thus,  it  appears  that 

s can  .be  taken as  a  reasonable  though  somewhat  unconventional 

measure  of  the  resolution  in z .  

A s  before, 9 is  determined  by  minimizing  a  linear  combination 
2 of s and 0 ~ -  however,  in  this  case,  it  is  necessary  to  impose an 

additional  constraint  to  obtain  a  nontrivial  solution.  The  con- 

straint  chosen  by  Backus  and  Gilbert  is  that A ( z ,  z') be  unimodu- 

lar, i.e., 

f '  

I A ( z ,  z')dz' = 1 

This  is  a  reasonable  choice  if F(z) is  interpreted as some  average 
value of f .  However,  it  should  be  noted  that,  in  general, 

A ( z ,  z') can  be  negative  for  some  values of z ' ;  thus,  the  analog 

with  a  weighted  average  is  not  complete  unless  one  is  willing  to 

admit  negatLve  weights.  Carrying  out  the  minimization  process  yields 

where 

E ( z )  = w $2) + (1 - w) r E 

u = I Ki(z)dz i 

and 

s = 12 I ( Z  - z')~K~(z')K. (z')dz' ij 7 
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Thus,  by varying  the  weight w a tradeoff  between  error  and  resolu- 

t i o n  as measured by s can  be  obtained.  If s is  p l o t t e d   a g a i n s t  

crf a s  w v a r i e s  from 0 t o  1, a "tradeoff  curve" is obtained which 

can  be  used t o  pick  the  appropriate   value  of  w f o r   t h e   a p p l i c a t i o n  

a t  hand. One such  tradeoff  curve is obtained  for   each  value  of  z 

considered. Examples are   given  in   the  fol lowing  sect ions.  

Other  parameters can be  defined  which are use fu l  i n  charac- 

te r iz ing   the   behavior  of  A(z, 2 ' ) .  One such  parameter is  t h e  

"center"  defined as 

c ( z )  = J z 'A2(z , z ' )dz  '/I A 2 ( z ,  z ' ) d z '  (20) 

A "resolving  length"  can  then  be  defined  as  the  spread  about  the 

center  

R(Z) = 1 2  J [c(z) - 2'12 A2(z, z ' ) d z  ( 2 1 )  
n 

Obviously, i f   f ( z )  is t o   r e p r e s e n t  a weighted  average  of f over a 

region  centered on z ,  then w e  would l i k e   t o  have c ( z )  = z .  Note 

tha t   the   spread   a l so   can   be  writ ten a s  

s ( z )  = R(z) + 12[2 - c ( z ) I 2  1 A2(z ,   z ' )dz '  (22 )  

Thus, s ( z )  has   cont r ibu t ions  due  both to   the   wid th   o f  A ( z ,  z ' )  and 

the  displacement of i t s  center from z .  Therefor&,  minimizing s ( z )  

has   the   des i rab le   p roper ty  of  reducing  both  the  width  of A and the  

departure  of its center  from the   va lue  of z being  considered. 

It  i s  o f   i n t e r e s t   t o   n o t e   t h a t   t h e  minimum information  form 

(Eq.  ( 13 ) )   does   no t ,   i n   gene ra l ,   r e su l t   i n  a unimodular  averaging 

kernel .  However, t he   de r iva t ion   l ead ing   t o  Eq. (13)  can be  modi- 

f i ed   t o   i nco rpora t e  a un imodular   cons t ra in t ,   resu l t ing   in   the  

so lu t ion  
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III. APPLICATION TO OZONE PROFILE RETRIEVAL 

The  problem  of  retrieving  information  on  the  vertical  dis- 

tribution  of  ozone  within  the  earth's  atmosphere  from  measurements 

of  backscattered  ultraviolet  radiance  using  a  satellite  borne . ' 

sensor  can  be  analyzed  from  the  point  of  view  of  Backus-Gilbert 

theory.  Although  a  considerable  body  of  literature  on  the  treat- 

ment  of  this  type of inversion  problem  exists  (e.g.,Refs. 12,13,and 

14),  no  attempt  will  be  made  here  to  review  the  various  methods. 

Rather,  we  shall  be  concerned  with  more  general  questions  con- 

cerning  the  information  content  of  the  measurements. 

The  extraction  ofozoneinformation  from  backscattered  radi- 

ance.measurements  is  in  principle  a  straightforward  process.  The 

incident  solar  radiation  is  scattered  back  to  the  satellite  sensor 

from  various  levels  within  the  atmosphere  and  from  the  lower 

boundary  surface.  In  addition,  if  the  measurement  is  made  within 

an  ozone  absorption  band,  the  radiation  is  attenuated  by  absorption 

along  the  total  path.  To  a  first  approximation,  the  majority  of 

the  radiation  is  backscattered  from  an  effective  scattering  layer. 

If  the  distribution  of  scatterers  (atmospheric  molecules  and 

aerosols)  is  assumed  known,  then  a  measurement  of  the  ratio  of  the 

backscattered  radiance  to  the  incident  solar  flux  permits  the 

attenuation  due  to  ozone  absorption  to  be  inferred.  From  a  knowl- 

edge  of  the  ozone  absorption  coefficient,  the  total  ozone  above 

the  effective  scattering  layer  can  be  inferred.  For  an  estimate 

of  total  ozone,  the  effective  scattering  layer  should  be  located 

in  the  troposphere. To obtain  profile  information,  measurements 

at  several  different  wavelengths  are  required,  corresponding  to 

scattering  layers  covering  a  range  of  heights  in  the  stratosphere. 

The  problem  of  extracting  ozone  information  divides  naturally 

into  two  distinct  problems:  retrieval  of  high  level  profiles  and 

retrieval  of  total  column  abundance.  Since  the  retrieval  of  total 

column  abundance  does  not  require  a  profile  inversion  in  the  usual 

sense,  only  the  upper  level  profile  retrieval  will  be  considered 
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here.  Most  investigations of profile  inversion  have  been  limited 

to  the  "topside"  or  region  above  the  ozone  peak so that  only 

single  scattering  need  be  considered.  For  example,  the  Nimbus 4 

B W  data'have  been  used  to  retrieve  profiles  only  above  approxi- 

mately  the 10 m b  level. 

For a single  scattering  Rayleigh  atmosphere,  the  backscattered 

spectral  radiance Ii measured  by a nadir  viewing  sensor  at  wave- 

length Xi can  be  written  as 

where F is  the  solar  spectral  flux, 8 is the  solar  zenith  angle, 

B .  is  the  scattering  extinction  coefficient, ki is  the  absorption 

coefficient,  X(p)  is  total  ozone  (cm-kPa)  above  pressure  level p, 

and p is  lower  boundary  pressure  level.  It  is  assuked  that  the 

integrand  in Eq. (1) approaches  zero  as p -F po.  Given  measure- 

i' 

1 

0 

ments  of  I./F  the  retrieval  problem  then  is  to  solve th.e integral 

equation  for  x(p) . 
1 i' 

In  forming a linear  inversion  problem,  most'methods  consider 

perturbations  about some starting  profile  or  first  guess X (p). 

For  this  discussion,  the  atmosphere  is-divided  into  discrete  layers 

of  uniform  thickness  in Rnp. Further,  because of the  large  range 

of  variation  of I with X, a logrithmic  scaling  is  found  convenient. 

0 

Then  the  deviation  of  Rn I from  the  value  it  would  have  for  an 

ozone  profile X (p)  can  be  written  to  firgt  order 
- i 
0 

6 Rn  Ii 

where x is 

derivatives 
j 

the  amount  of 

are  evaluated 

6 Rnx 
j 

ozone  in  the  jth  layer.  The  partial 

at X = X (p)  with  the  integral  written 0 

in  numerical  quadrature  form  and  provide a measure  of  the  sensi- 

tivity of the  radiance  at  the  ith  wavelength to changes  in  the 
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ozone  content  in  the  jth  layer.  In  the  notation  of  Section 11, the 

partial  derivatives  correspond  to a discrete  form  of K . ( z ) ,  whereas 

6 LnIi = gi  and 6 Lnx = f A set  of  kernel  functions  for  seven 

wavelengths in the  Hartley-Huggins  band  is  shown  in  Fig. 1. (These 

kernels  were  provided  by C. L. Mateer.) 

1 

j j' 

Using the  methods of SectionI1,with  the  spread  as  the  param- 

eters  characterizing  the  averaging  kernel,  tradeoff  curves  were 

calculated. An example  of a tradeoff  curve isshownin Fig. 2 for 

the 3.76 mb level.  In  this  case, a random  noise  in  the  measurement 

comparable  to  that  achieved  with  the  Nimbus 4 B W  experiment (~1%) 

100' I I I I I 1 

0 1 2 3 4 5 6 

I a In v a  In X I  

0, WEIGHTING  FUNCTIONS 
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E 
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I 
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F i g .  1.  Kernel f u n c t i o n s  for  t o p s i d e  owne p r o f i l e   r e t r i e v a l  

u s i n g   b a c k s c a t t e r e d   u l t r a v i o l e t   m e a s u r e m e n t s .   E a c h   c u r v e  is 

l a b e l e d  by the wave leng th   (Angs t roms)  t o  wh ich  it p e r t a i n s .  (1 b a r  = 

100 kPa.) 
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F i g .  2 .  T r a d e o f f   c u r v e   a t  the 3.76 m b  level for  ozone   p ro -  

f i l e  r e t r i e v a l  from b a c k s c a t t e r e d   u l t r a v i o l e t   m e a s u r e m e n t s .  The 

spread  i s  used  here a s  a measure  of v e r t i c a l   r e s o l u t i o n ,  and  an 

rms  measurement error of 1% was assumed. (1 b a r  = 100 kPa .) 

was  assumed.  The  L-shape  of  the  curve  is  characteristic  of  remote 

sensing  profile  retrieval  techniques  in  general.  If  an  attempt  is 

made  to  improve  the  resolution  as  measured  by  the  spread  much 

beyond 1 scale  height,  the nns profile  error  increases  rapidly. 

By  combining  information  from  curves  such  as  these  from  many  dif- 

ferent  levels,  the  spread  as  a  function  of  height  was  calculated 

for  several  different rms errors  (Fig. 3 ) .  If  a 10% error  is 

accepted,  then  a  vertical  resolution  of  one  scale  height  or  better 

can  be  achieved  between 0.5 and 10 mb. If,  however,  an  error  no 

larger  than 1% is  demanded,  virtually  no  vertical  structure  infor- 

mation  can  be  obtained. 
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F i g .  3 .  S p r e a d   a s  a f u n c t i o n  o f  h e i g h t  for  V a r i o u s  Owne Pro- 

f i l e  errors. An r m s  measurement error of 1% was  assumed. (1 bar = 

100 kPa .) 

IV.  APPLICATION  TO  TEMPERATURE  PROFILE  RF,TRIEVAL 

Backus-Gilbert  theory  has  found  considerable  use  in  the 

analysis  of  problems  associated  with  the  retrieval  of  atmospheric 

temperature  profiles  from  remotely  measured,thermally  emitted, 

infrared  radiation.  The  method  has  been  applied  with  considerable 

success to the  sounding  of  the  terrestrial  atmosphere;  however,  it 

has  proven  to  be an especially  useful  tool  in  analyzing  the  poten- 

tial  of  various  types  of  measurements  for  sounding  the  atmospheres 

of other  planets.  In  the  case  of  the  Earth's  atmosphere,  there  is 

usually  information  on  the  temperature  profile  available  in 

addition  to  the  radiance  measurements.  For  planetary  atmospheres, 
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the  radiance  measurements  are  frequently  all  that  is  available 

for  estimating  a  profile.  Examples  of  both  types  will  be  con- 

sidered. 

For  purposes of this  discussion,  consider  a  nonscattering 

atmosphere  in  local  thermodynamic  equilibrium.  Then  the  spectral 

radiance  in  the  ith  spectral  interval  as  measured  with  a  sensor 

located  above  the  atmosphere  can  be  written as 

In  this  expression, z = - Rn(p/po),  i.e., z would  be  the  geometric 

height  expressed in units  of  scale  height  for an isothermal  atmos- 

phere.  B.(T)  is  the  Planck  function  for  temperature T within 

spectral  inverval  i  (assumed  to  be  narrow),  and T.(z) is  the  atmos- 

pheric  transmittance  between  level z and  the  sensor.  The  term 

1 

1 

Bi(T )Ti(0) is  the  contribution  from  the  lower  boundary  located  at 

pressure  level po here  assumed  to  be  that  of  a  blackbody  at  temper- 

ature T . This  term is usually  specified  from  measurement2  in 

0 

0 

transparent  spectral  intervals. 

The  problem  then  is  to  use  measurements  of I to  retrieve 

information  on  the  temperature  profile T(z). The  problem  is  first 

linearized  by  expansion  about  an  appropriately  chosen  reference 

profile T (z);  this  results  in  the  set  of  linear  integral  equations 

i 

0 

where  m  is  the  number of spectral  intervals  for  which  measurements 

exist.  The  radiance  difference  is AI = Ii - I. where I is  calculated 

from  Eq.  (24)  using  the  reference  profile,  and AT(z) = T(z) - T (2 ) .  

The  kernel  functions  Ki(z)  are  given  by 

0 

i 1 i 
0 
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A. Earth 

Remote  temperature  sounding  in  the  Earth's  atmosphere  has 

been  carried  out  using  measurements  within  the 15 um  and 4.3 um  CO 

bands  as  well  as  measurements  in 0 microwave  lines.  Only  soundings 

within  the 15 pm  band  will  be  considered. 

2 

2 

Conrath  (Ref. 5) analyzed  measurements  within  the 15 urn band 
in  terms  of  the  tradeoff  between  averaging  kernel  spread  and  pro- 

file  error,  assuming  an  error  covariance  matrix  of  the form 

g = o ' 1  (27) 
E % 

where o2 is  the  variance of the  measurement  noise  and  is  assumed 

to  be  the  same  in  all  spectral  intervals  and 1 is  the  unit  matrix. 

With  these  assumptions,  it  was  possible  to  calculate  tradeoff 

cu.rves  in  terms  of  spread as a  function of 0 2 / 0 2 .  Two  cases  were 

considered,  one  for  a  set  of  seven  spectral  intervals  and  the  other 

for  a  set  of 16 intervals.  Kernel  functions  for  the  seven-interval 

set  are  shown  in  Fig. 4 .  Typical  tradeoff  curves f o r  the 49-mb 

level  are  shown  in  Fig. 5. Again,  the  characteristics  L-shape  curves 

result.  Averaging  kernels  from  selected  points  on  the  tradeoff  curve 

for  the  seven-interval  set  (broken  curve  in  Fig. 5) are  shown  in 

Fig. 6. The  first  averaging  kernel  corresponds  to  a  point  near  the 

minimum  error-maximum  spread  end  of  the  tradeoff  curve  while  the 

last is from  the  maximum  error-minimum  spread  end  of  the  curve.  Note 

that  the  latter  has  a  substantially  more  narrow  central  peak  than 

the  former  but  has  developed  sidelobes  with  negative  excursions. 

E 

T I  

T E  

The  center  as  a  function  of  height  calculated  using Eq. (20) 

is shown  in  Fig. 7. The  same  value  of 02/02 was  used  at  all  levels. 

Ideally, c(z)  should  lie on the  broken  diagonal  line  shown  in  the 

figure.  However,  above  approximately 10 mb, c(z)  stops  increasing. 

This  level  corresponds  to  the  peak  of  the  uppermost  kernel  function, 

T E :  
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F i g .  4 .  Kernel f u n c t i o n s  for  the 15-pm CO band i n  the ter- 2 
r e s t r i a l   a t m o s p h e r e .  The l a b e l s  1, 2 ,  6 ,   7 ,  8, 10, and 14 refer 

t o  f r e q u e n c i e s   6 6 7 . 5  cm , 677.5  cm , 697.5  cm-’,  702.5 cm-’, 

707.5  cm , 727.5 cm , and  747.5  cm , r e s p e c t i v e l y .  

(1 b a r  = 100 kPa .) 

-1 -1  

-1 -1  -1 

and  essentially  no  useful  information  is  obtained  above  that  level. 

The  corresponding  resolving  length  as  a  function of height  is  given 

in  Fig. 8. The  values  shown  correspond  to  formal rms temperature 

errors CJ of 1 to 2 K for  instrument  noise  levels  typical  of  those 

achievable  with  existing  spectrometers  operating  in  the 15-pm band. 

Thus,  the  resolution as measured  by  the  resolving  length  is approxi- 

mately 0.5 scale  height  in  the  lower  troposphere,  but  degrades to 

in  excess of two  scale  heights  at 10 mb. 

T 
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F i g .  5 .  Tradeoff  curves a t  the 49-mb level   for  temperature 

profi le  retrieval from measurements within  the 15-pm CO band i n  

the  terrestrial atmosphere. The broken curve i s  f o r  a se t  of 

seven s p e c t r a l  intervals  while the solid  curve i s  for a sixteen 

interval  set .  (1 bar = 100 kPa ; 1 erg = 10 J.) 

2 

-7 

Fleming  (Ref. 7) has  considered  the  problem  of  attempting  to 

construct  averaging  kernels  which  are  approximately  rectangular  in 

shape.  This  effort  was  motivated  by  the  fact  that  in  meteorolog- 

ical  applications,  the  thickness  of  atmospheric  layers  between 

constant  pressure  surfaces is frequently  the  desired  quantity. 

Since  the  thickness' is proportional  to  the  mean  temperature  of  a 

layer,  a  rectangular  averaging  kernel  permits  direct  estimation  of 

17 1 



. 1  

t o  
50 

100 

200 

500 

50 

100 

200 

500 

\ 

(a1 

S.7.1 

I d 

5 
A 

\ 

2.0.53 
S'2.6 

5 
A 

:ir 2 1 

100 

200 

500 

1000 
0 

50 - 
100 - 
200 - 
500 - 

(el 

2.0.73 
s.2.0 

IO00 
0 5 

A 

i 
1.0 

F i g .  6 .  Averaging kernels  corresponding t o  various  points along 

spectral  interval  set shown i n  F i g .  5 .  (1 bar = 100 kPa .) 
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Fig. 7 .  Center a s  function  of  scale.  height  for  the  seven spec- 

t r a l  interval  set  whose kernel  functions  are shown i n  Fig. 4 .  

(1 bar  = 100 kPa .) 

thicknesses. For this  purpose, D ( z ,  z ' )  in Eq. (5) was  taken as 

a  rectangular  €unction,  and  the  weight  used  was 

This  choice of weight  acts as 6 penalty  function  which  tends  to 

suppress  the  amplitude of A ( z ,  2 ' )  outside  the  region  delineated 

by D (2, 2') . Fleming's  results  showed  that  a  slightly  better 

thickness  estimate  could  be  obtained  in  this  way  than  by  integrating 

a  retrieved  temperature  profile,  although  the  improvement  was  con- 

sidered  marginal. 

Recently,  Rodgers  (Ref. 9) has  employed  the  Backus-Gilbert 

formulation  to  analyze  the  vertical  resolution  achievable  with 

statistical  estimation  techniques.  The  basic  approach  used  was to 

treat  the  available a pr ior i  statistics  as  a  measurement of the 
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F i g .  8 .  R e s o l v i n g   l e n g t h   a s  a f u n c t i o n   o f   s c a l e   h e i g h t  for 

the seven s p e c t r a l   i n t e r v a l  set whose kernel f u n c t i o n s   a r e  shown 

i n  F i g .  4 .  The assumpt ions   u sed  i n  the c a l c u l a t i o n s   a r e  described 

i n  the tex t .  (1 b a r  = 100 kPa .) 

temperature  profile  with  high  vertical  resolution  but  large  error. 

The  results  of  the  study  indicate  that  the  use of statistics  along 

with  the  radiance  measurements  considerably  improves  the  vertical 

resolution  over  that  achieved  with  the  radiance  measurements  alone. 

For  example,  by  using  statistics  representative  of  forecast  errors, 

it  was  found  that  an  improvement  in  resolution  by  about  a  factor 

of  two  can  be  achieved  at  a  profile  error  level  of 0.5 K. 

B. Mars 

The  Mariner 9 spacecraft,  launched  into  orbit  about  Mars  in 

November 1971, carried  a  Michelson  interferometer  operating  in  the 

infrared.  Measurements  within  the  15-pm CO band  were  used  to 

retrieve  temperature  profiles  on  a  near-global  basis.  Although  the 
2 
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average  basal  pressure  of  the  atmosphere  is  only  about 5 mb, the 

fact  that  it  is  almost  pure  carbon  dioxide  permitted a large  por- 

tion  of  the  lower  atmosphere  to  be  sounded. 

Because  of  the  virtual  nonexistence  of a p r i o r i  information 

on  the  Martian  thermal  structure,  only  the  radiance  measurements 

were  available  for  retrieval  purposes.  Kernel  functions  for a 5- 

interval  set  of  measurements  are shown in  Fig. 9. An analysis  was 

carried  out  with  this  set  of  functions  in  terms  of a tradeoff 

between  spread  and  error.  The  resulting  vertical  resolution as 

measured  by  the  resolving  length  is  shown  in  Fig. 10 as a function 

of height  for a formal nns temperature  profile  error  of 2 K. The 

center as a function  of  height  is  shown  in  Fig. 11. For  purposes 

of  comparison  with  Figs. 7 and 8, the  Martian  pressure  scale  height 

is  approximately 10 km. Not  surprisingly,  the  results  for  Earth 

F i g .  9. Set of 15-pm C02 band kernel f u n c t i o n s   u s e d  f o r  

t empera ture   sound ing  i n  the M a r t i a n   a t m o s p h e r e . ( l  b a r  = 200 kPa.1 
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F i g .  10 .  Resolving  length  as  function  of  height i n  the 

Martian  atmosphere obtained w i t h  the  ker,nel  functions shown i n  
F i g .  9. (1 bar  = 100 kPa. )  

and  Mars  are  quite  similar.  The  behavior  of  c(z)  indicates  that 

little  useful  information  is  obtained  above 0.1 mb, and  the  reso- 

lution  varies  from  slightly  greater  than 0.5 scale  height  in  the 

lower  atmosphere  to  in  excess  of 2 scale  heights  at  the  upper  limit 

of the  sounding  region.  Unlike  the  Earth,  however,  the  vertical 

resolution  for  Mars  cannot  be  significantly  improved  at  the  present 

time  because  of  a  lack  of  additional  information.  Nevertheless, 

almost 20 thousand  Martian  temperature  profiles  have  been  retrieved 

(Refs. 15 and 16) and  used  to  study  the  dynamic  regime  of  the  lower 

atmosphere  (Refs. 17, 18, and 19) . 
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F i g .  11. Center a s   f u n c t i o n  of h e i g h t  i n  the Mart ian   a tmo-  

s p h e r e   o b t a i n e d  w i t h  the kernel f u n c t i o n s  shown i n  F i g .  9 .  

(1  b a r  = 100 kPa .) 

C. The Jovian  Planets 

The atmospheres  of  the  Jovian  planets  (Jupiter,   Saturn,  

Uranus,  and  Neptune) are composed pr imari ly  of hydrogen  and  helium 

with small admixtures  of  methane, ammonia, and other   gases .  The 

hydrogen  spectrum  includes  pressure  induced  lines, two of which 

are   centered a t  ~ 3 6 0  c m  and ~ 6 0 0  cm . These l i n e s  are q u i t e  

broad ( Z  100 c m - l )  and  can  be  used for  temperature  sounding  even 

with  measurementsofmoderate  spectral  resolution.  In  addition, 

the v CH band  can be used  for   temperature   re t r ieval ,   provided  that  

measurements  with a spec t ra l   reso lu t ion   of   the   o rder   o f  a few cm 

are ava i lab le .   Kerne l   func t ions   for   Jupi te r   for  a set  of spectral 

intervals  including  both  hydrogen  and  methane  absorption  features 

are shown in   F ig .  1 2 .  The uppermost  kernel  requires a s p e c t r a l  

reso lu t ion  of 1 an-’, while  the  remaining  kernels are f o r  5 an-’ 
resolut ion.  

-1  -1 

4 4  
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F i g .  1 2 .  Kernel f u n c t i o n s  for t e m p e r a t u r e   p r o f i l e   r e t r i e v a l  

i n  the atmosphere  of J u p i t e r .   S p e c t r a l   i n t e r v a l s   w i t h i n  the V q  

methane   band  and   pressure   induced   hydrogen  l ines  a r e   i n c l u d e d .  

(1 b a r  = 100 kPa .) 
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Earth-based  measurements  of  the  Jovian  thermal  emission  spec- 

trum  have  been  used  to  obtain  disk-averaged  temperature  profiles 

(see,  e.g.,  Ref. 20). In  addition,  the  Mariner  Jupiter/Saturn (MJS) 

1977 Mission  will  carry a Michelson  interferometer  capable of 

giving  high  quality  spectral  measurements  at  good  spatial  reso- 

lution  during  flybys  of  Jupiter,  Saturn,  and  possibly  Uranus. 

Therefore,  there  is  considerable  interest  in  analyzing  the  capa- 

bilities  of  measurements  of  this  type.  The  set  of  kernels  shown 

in  Fig.  12,  excluding  the  uppermost  kernel,  were  employed  in a 

Backus-Gilbert  analysis.  The  results  are  summarized  in  Fig.  13 

5- 
0 1 2 3 4 

SPREAD  SCALE HEIGHT 

F i g .  13 .  S p r e a d   a s  a f u n c t i o n  of h e i g h t  i n  the Jov ian   a tmo-  

s p h e r e   o b t a i n e d  w i t h  the kernel f u n c t i o n s  shown i n  F i g .  12. Both 

the minimum  spread   ob ta inable   and  the s p r e a d   o b t a i n a b l e  f o r  the 

t e m p e r a t u r e   p r o f i , l e  errors i n d i c a t e d   a r e  shown. Measurement errors 

consistent w i t h  c u r r e n t   s t a t e - o f - t h e - a r t   i n s t r u m e n t a t i o n  were 

assumed. (1 b a r  = 100 kPa .) 
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where spread  as a function of height  is p lo t t ed .  The hydrogen  and 

methane regions were t rea ted   separa te ly ,  and two curves  are shown 

for  each; one represents   the m i n i m u m  spread  achievable and the  

second i s  the  spread  obtainable   with  the  prof i le   errors   indicated.  

An inst rument  no ise   - leve l   equa l   to   tha t   an t ic ipa ted   for   the  MJS 1977 

interferometer was assumed. The rapid  increase of t h e  spread  as 

e i t h e r  end of  a  sounding  region i s  approached i s  due t o   t h e   f a c t  

tha t   c (z )   does   no t   increase   ou ts ide   the   reg ion  from  which useful  

information i s  obtained  (see Eq. (22)). Thus, t h e   t o t a l   v e r t i c a l  

range  covered by the combined spec t ra l   reg ions  is s l igh t ly   over  two 

pressure  decades,  although  the  lower  limit may be set i n  p rac t i ce  

by the  presence of cloud  decks. As a f i n a l  example,  an ana lys i s   fo r  

Uranus using  only  the hydrogen absorpt ion  features  is  presented i n  

Fig. 14. The r e su l t s   a r e   s imi l a r   t o   t hose   fo r   Jup i t e r   excep t   t ha t  

the  pressure  range  over which information  can  be  obtained is some- 

what displaced. 

URANUS 

H, LINES 

MIN. SPREAD 

“0 1 2 3 4 

SPREAD,  SCALE  HEIGHT 
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Recently,  Gautier  and  Revah  (Ref. 10) have  provided  an 

analysis  of  the  Jovian  temperature  sounding  problem  from a more 

conventional  information  theory  point  of  view,  and  it is of inter- 

est  to  compare  the  results  of  that  study  with  those  obtained  with 

Backus-Gilbert  theory.  In  the  study  of  Gautier  and  Revah,  it was 

assumed  that  the  radiative  transfer Eq. (24) could  be  written  in 

a linearized  form 

where  G(v)  is a function of the  measured  radiance  at  frequency u, 
and v is a reference  frequency.  The  Jovian  atmosphere  was  assumed 

to be  infinitely  deep so there  is  no  boundary  term.  For  measure- 

ments  within  the  hydrogen  lines,  the  optical  depth  has  the  func- 

tional  form 

0 

By  introducing  the  new  variables, 

Eq. (29) can  be  rewritten  in  the  convolution  form 
m 

g(5) = I , K ( 5  - rl) f (rl1dr-1 (33) 
J 

where g ( 5 )  is  obtained  from  the  measurements, f (17) is  related  to 

the  temperature  profile,  and  the  kernel  has  the  functional  form 

By  an  appropriate  continuation  of g(<) outside  the  range of 5 for 
which  measurements  are  possible,  the  convolution  theorem  can  be 

applied  to Eq. (33) to  obtain 

where  the  asterisks  denote a Fourier  transformation  and k is 
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interprefed  as  a  spatial  frequency  in  the  vertical.  It  is  assumed 

that  the  measurements  are  contaminated  by noise-whose Fourier  spec- 

trum  N*(k)  is  essentially  constant  over  the  range of interest.  In 

general, I g*  (k) I will  tend  to  be  a  monotonically  decreasing  func- 
tion of k. At  some  value of k, such  as  k  1g*  (k) I will  become 
equal  to  the  noise  IN*  (k) I . Therefore,  for  higher  spatial  fre- 

quencies,  no  useful  information  can  be  obtained.  The  minimum sam- 

pling  interval 60 required  to  reproduce  all  the  profile  information 

contained  in  the  measurements  is  obtained  from  Shannon's  sampling 

theorem 

m' 

71 6l-l = - 
m k (36)  

Gautier  and  Revah  define  the  vertical  resolution  to  be 61, which 

is  one-half  of  the  shortest  wavelength  retrievable.  By  assuming 

hydrostatic  equilibrium  and  using  Eqs. (30 )  and  (31) , Eq. (36)  

can  be  rewritten 

6 2  = -  
7r 

2km 

where,  as  before, z is 

k  can  be  established, 

To  calculate  k , g*  (k) 
m 

m 

(37)  

height  in  units  of  scale  height.  Thus,  if 

the  vertical  resolution  dan  be  estimated. 

must  be  known.  Gautier  and  Revah  estimated 

this  quantity  by usingamodel Jovian  atmosphere  to  which  white 

noise  of  approximately  2 K standard  deviation  was  added  to  simulate 

fine  scale  structure.  This  permitted 6z to  be  calculated  as  a 

function  of  measurement  signal  to  noise  ratio. 

It  is  obvious  that  the  Gautier-Revah  and  Backus-Gilbert 

approaches  are  philosophically  somewhat  different,  as  the  former 

makes  use  of  the  anticipated  properties  of  the  profile  to  be 

retrieved  while  the  latter  depends  solely  on  the  behavior.of  the 

kernel  functions.  Nevertheless,  it is of interest  to  compare  the 

results  obtained  with  the  two  methods.  For  signal  to  noise  ratios 

comparable  to  those  anticipated  in  the  hydrogen  lines  with  the 
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MJS interferometer,  the  calculations  of  Gautier  and  Revah  indicate 

a  vertical  resolution  of  approximately 0.5 scale.  height  which  is 

consistent  with  the  Backus-Gilbert  results  shown  in  Fig. 14. 

V. CONCLUDING REMARKS 

The  Backus-Gilbert  theory  has  proven  to  be  a  useful  tool  for 

analyzing  the  potential  of  various  types  of  remote  radiation 

measurements  for  the  retrieval  of  atmospheric  profiles.  While  it 

has  generally  come  to  be  regarded  as  a  means  of  studying  the  trade- 

off  between  vertical  resolution  and  profile  error,  its  applicability 

is,  in  fact,  considerably  broader.  It  can  be  used  to  construct 

averaging  kernels  whose  shapes  are  dictated  by  the  requirements  of 

a  particular  application.  The  extent  to  which  the  method  is  suc- 

cessful  can  be  judged  on  the  basis  of  whether  the  resulting 

averaging  kernels  are  better  approximations  to  what  is  required 

than  are  the  kernel  functions  of  the  original  set  of  integral 

equations. 

Examples  from  several  widely  differing  applications  were  pre- 

sented  in  this  review.  However,  the  results  were  quite  similar 

in  all  cases.  The  broad,  smooth  kernels  associated  with  radiative 

transfer  processes  whether  it  is  backscattered  solar  radiation  or 

thermally  emitted  radiation  cannot  be  combined  into  sharply  peaked 

averaging  kernels  without  incurring  strong  propagation  of  measure- 

ment  errors.  However,  examination  of  each  case  reveals  that  for 

reasonable  error  levels,  averaging  kernels  can  be  obtained  which 

are  narrower  than  the  original  radiative  transfer  kernels.  In  this 

sense,  inversion  of  the  data  sets  is  judged  to  be  worthwhile.  In 

the  case  of  temperature  profiles  in  the  Earth's  atmosphere,  a  large 

body  of infomation is  available  in  addition  to  radiance  measure- 

ments  and  this  information  can  be  used  to  improve  the  quality  of 

the  retrievals.  For  other  planetary  atmospheres,  frequently  little 

other  information  is  available.  In  such  cases,  analyses  of  the 
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type presented are p a r t i c u l a r l y   u s e f u l   i n   e s t a b l i s h i n g   t h e   v a l u e  

and   l imi ta t ions   o f   re t r ieved   prof i les .  

The Backus-Gilbert  theory is, of  course,   not  unique  in i ts  

a b i l i t y  t o  analyze  ver t ical   resolut ion.   Another   approach,  which 

i s  of in te res t   because  of i t s  use  of more conventional  information 

theory  techniques,  w a s  briefly  reviewed  and  found t o  give  essen- 

t i a l l y   t h e  same v e r t i c a l   r e s o l u t i o n ,  a t  least f o r   t h e  one  example 

considered. 

SYMBOLS 

column vector  of c o e f f i c i e n t s  (Eq. (6)) 

coef f ic ien ts   used   in   l inear   es t imat ion  

averaging  kernel 

half-  width a t  half-maximum 

Planck  radiance a t  temperature T and i t h  frequency 

center  of  averaging  kernel  defined  in Eq.  ( 2 0 )  

des i r ed   func t ion   i n   de f in i t i on  of Q ( z )  

measurement error   covariance  matr ix  (Eq. ( 6 ) )  

matrix  elements 

unknown p r o f i l e  

value  of f corresponding t o  j t h   l a y e r  

inferred  property  of unknown p r o f i l e  

s o l a r   f l u x  a t  i t h  frequency or wavelength 

vector  of  measurement quan t i t e s  (Eq. (8 ) )  

measured q u a n t i t i e s  

function  of measured radiance a t  frequency 

radiance a t  i t h  frequency or wavelength 

we igh t   f ac to r   i n   de f in i t i on   o f  Q ( z )  

absorp t ion   coef f ic ien t  

kernel   funct ions 

kernel  elements 

resolving  length  of   kernel   def ined  in  Eq.  (21)  

atmo'spheric  pressure  level 

lower  boundary  pressure  level 
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quadrat ic  form  used to  control  shape of  averaging  ker- 

ne l  

f ac to r  used i n  R (  z) 

l inear   func t ion  of Q (z )  and 0 -  (z)  

matrix  defined  in Eq. (8) 

spread  of  averaging  kernel  defined  in Eq. (14) 

matrix  elements  defined  in Eq. (10) 

opt ical   depth from l eve l  p to  top  of  the  atmosphere a t  

2 
f 

frequency 

atmospheric  temperature  as  a  function  of  pressure 

reference  temperature  profile 

vector  defined i n  Eq. (16) 

vector  elements 

vector  defined i n  Eq. (8) 

vector  elements 

weight  used i n  R ( z 1  

matr ix   def ined  in  Eq. (17) 

matrix  elements 

amount of  ozone i n   j t h   l a y e r  

amount of  ozone i n  an atmospheric column above pres- 

su re   l eve l  p 

f i r s t  guess  for X(p) 

height-related  independent  variable 

sca t te r ing   ex t inckion   coef f ic ien t  

he ight - re la ted   var iab le   def ined   in  Eq. (31) 

frequency 

frequency  related  variable  defined i n  Eq. (32) 

e r ror   var iance  i n  2 (z) 
measurement error   var iance 

e r ro r   va r i ance   i n  T 

atmospheric  transmittance from l eve l  z t o   t he   t op  of 

the  atmosphere a t   i t h  frequency 

matrix defined  following Eq. (23) 
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matrix  elements 

delta  function 

.= (1 - w) r / w  

solar  zenith  angle 

reference  frequency 
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DISCUSSIONS 

Chahine: D o  you r e a l l y  need t o  use  the  Gilbert-Backus method t o  
f i n d   t h a t   t h e  optimum spacing i s  reduced to   half   width? 

CORrath: It depends  on  what you are t ry ing  to do. It is  not  
always  true. The optimum resolut ion  turns   out   to   be  of   the   order  
of   the  half-width  of   the  or iginal   kernel .  However,  you can  improve 

, on it a b i t  by  moving around  on  the  trade-off  curve,   particularly 
i n   t h e   v i c i n i t y  of the  e l b o w .  It depends  on how you wish to t r ade  
of f  between resolut ion  noise .  

Chahine: The degree  of  resolution i s  not  only a funct ion of t he  
kernel and the  data ,   but  it i s  also a funct ion  of   the  s t ructure  of 
the   so lu t ion   p ro f i l e .  To make my po in t   c l ea r ,  I need to draw a 
very  brief  diagram on the  blackboard. 

Conrath: I think  the  point  is  t h a t  you have t o  be  very  careful by 
what you mean by "resolut ion."  Go ahead. 

Chahine: I f  you are t rying  to   "resolve"  the  t ropopause from remote 
sensing  data  you w i l l  f i n d   t h a t   t h i s  is an   ex t remely   d i f f icu l t   t ask  
no matter how narrow the  weighting  functions are. This is  a r e s u l t  
of the   fac t   tha t   the   ou tgoing   rad iance  i s  a weak function  of  the 
value of  temperature a t  the  tropopause. On the  other  hand,  one  can 
resolve  the  s t ra topause  with  the same set of  weighting  €unction. 
Thus, my question is: How can you ge t   the   reso lv ing  power without 
taking  the  s t ructure   of   the   solut ion  into  account?  

MPERATURE 
PROFILE 

KERNEL 

( a )  

Fig. D-1. 

I 

Conrath:  Again, I th ink  it depends  on how you def ine   the   reso lv ing  
p o w e r  o f   the   reso lu t ion   essent ia l ly .   In   the  case of  Backus-Gilbert, 
i f  you use  the  spread  of  the  resolving  length as the  parameter, it 
is i n   t h e  same sense   tha t  you would use  the  width  of a spectrometer 
s l i t  funct ion as a measure  of  your  resolution.  Obviously, w h a t  
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sort of   fea tures  you can see depend  completely  on  the  details of 
t h e  spectrum. You can see or d e t e c t  a s p e c t r a l   l i n e  much nar- 
rower than   your . s l i t   func t ion   provided  i t ' s  s t rong  enough.  You'll 
see it spread  out ,  of course. 

Chahine:  Then  would I change my resolving p o w e r  i f  my so lu t ion  
happened t o  be l i k e   i n   F i g .  D-1 (a) ins tead  of be ing   l ike  i n  Fig.  
D-1  (b) ? 

Conrath: Well, n o t   i n   t h e   d e f i n i t i o n  I am using,  So you are f r e e  
t o  de f ine  it however you p re fe r .  

Chahine:  Okay. 

Conrath: So you have t o  take  it i n   t h e   c o n t e x t   i n  which it is  used. 

Chahine:  So the   reso lv ing  power t h a t  I wanted t o  ask  is, i s  the  
func t ion   r ea l ly  of the   so lu t ion  you are a f t e r ?  

Conrath: I f  you want t o   d e f i n e  it your way, yes. 

Kaplan:  But  he is  not   def ining it t h a t  way. 

Conrath: I th ink  it i s  a r b i t r a r y .  

Rodgers:  The s i t u a t i o n   t h a t  D r .  Chahine  has  drawn on the  board,  
t he   r e so lv ing  power is i d e n t i c a l   i n   b o t h  cases. There is  no d i s -  
t i n c t i o n  between  those two p r o f i l e s .  I t  i s  j u s t  a matter of  sign, 
providing it is a reasonably  l inear  problem and the   15  micron band 
i s  reasonably  l inear   in   that   case.   There i s  q u i t e  a d i s t i n c t i o n  
between  information and s igna l  and it must  be  realized. The eye 
may see a low-wattage  bulb  because  the  eye i s  a logarithmic  device.  
The de tec to r s  w e  use are l inear   devices .  

Chahine:  I f   t he   so lu t ion  happened t o  be  the  s t ra topause,  I can 
reso lve  it; i f  it is  the  tropopause, I cannot. What is  the  
resolving power then? 

Rodgers:  The resolving power i s  something tha t   doesn ' t   have  any 
kind  of  meaning i n  your  relaxation method. 

Chahine: No, I am not   thinking  in   terms  of   the  re laxat ion method. 

Rodgers :  In  Backus-Gilbert  method,  those t w o  s i tua t ions   a re   iden-  
t i c a l .  The s ign  is i r re levant .   Absolute   value i s  i r r e l evan t .  

Drayson:  I th ink   the   po in t  of nonl inear i ty   here  i s  very  important. 
I f  you  work i n   t h e  4.3 micron  band the  temperatures,   the  Planck 
funct ion i s  a very  nonlinear  function  of  temperature.  But i f  one 
i s  holding  for   the  Planck  funct ion  and  gets  a temperature from t h a t ,  
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then you do  have a l i n e a r  problem. So, I th ink   the   po in t  Clive i s  
making about  the  instrument  senses  in a l i n e a r  sprt of way is  a 
very good poin t   here .   But   i f  you are t ry ing   to   ge t   t empera ture  
d i r e c t l y ,  what  Chahine says  about  the--if you are thinking  on a 
4.3  micron  band,  then you c a n ' t  see t h a t .  You very much enhance 
the  posit ive  temperature  there  because  the  signal i s  much  much 
stronger,  because  of a nonlinearity  of  the  Planck  function. 

Kaplan: Of course? nobody i s  in t e re s t ed   i n   t he   P l anck   func t ion  
unless  i t ' s  a game t o  play.  It 's rea l ly   t he   t empera tu re   t ha t  w e  
are a f t e r ,  and so the  nonl inear i ty   does come i n  and it is  c ruc ia l .  
I ' l l  t a l k  m o r e  a b o u t   t h i s  later. 

Wes twa ter :  I r e a l l y  w a s  going t o  amplify D r .  Rodgers' comments. 
But  what the  Backus-Gilbert  technique  really  does is  estimate  one 
funct ional  from another   and  the  funct ional   that  you estimate is  
the  convolut ion  of   the  averaging  kernel   with  the  par t icular   prof i le  
t h a t  you are t r y i n g   t o   r e t r i e v e .  And, of  course,   that   functional 
w i l l  vary  depending  on  the  radiance  that   your  observations  have 
sensed.  But  the  measure  of  resolution  i tself ,   mainly  the  spread 
of the  averaging  kernel,   does  not depend on t h e   p r o f i l e  you are 
t r y i n g   t o   r e t r i e v e .  And I t h i n k   t h i s  i s  what Clive Rodgers a l s o  
has  said.  

Conrath:  Y e s ,  again  in  the  sense  of  the  analogy  with  the  instru- 
ment s l i t  function  of a spectrometer  in  sensing a spectrum;  what 
you actually  see  depends  on  the  spectrum. 

Twomey: I simply  wanted t o  comment t h a t   t h e   p o s s i b i l i t i e s  of 
ge t t i ng  a trade-off  curve  and  the  scanning  function  or s l i t  function 
or  whatever,   this  can  be  applied  with any l i n e a r  method a t  a l l .  
But in  the  Gilbert-Backus  procedure it is looked a t   e x p l i c i t l y .  
The nonlinear method,  you produce a combination  of  your  measurements, 
your gls,  whatever  they may be  called.  And so provided it i s  a 
l i n e a r  method,your  solution i s  a convolution type operat ion  or  i s  
got ten by a convolution type operation on your   inaccess ib le   f (x) .  
And you can  always  calculate  this  function  and you can,  of  course, 
look a t  the  spread of it. I t  i s  not  a specif ic   property of the  
Gilbert-Backus  procedure. 

Conrath:  T h a t ' s   r i g h t .   I n   f a c t ,  you can  derive  various  other 
algorithms  from  the  Backus-Gilbert  point  of  views  simply by mini- 
mizing a d i f f e ren t   quadra t i c  form. 

Barks trom:  I would l i k e   t o  make a comment and see   i f   the   p rocedure  
t h a t  I am suggesting i s  co r rec t  on the  Backus-Gilber t ,   that   in   the 
procedure i f  you go  back t o  t h e   o r i g i n a l  papers, f o r  example, 
Backus'  paper  and  Backus-Gilbert  and  Parkers  exposition,  there's 
a s u g g e s t i o n   i n   t h e r e   t h a t  you would go ahead  and  perform  an 
inversion  and  then  the  trade-off  curve is computed qui te   separa te ly .  

191 



I lIIlIl111111111111l111111l1ll111 I I I  I Ill I1 I1 I I 

It would suggest  an  inversion  procedure  where, i n   f a c t ,  you per- 
formed the  or iginal   inversion  procedure  and  then smoothed a f t e r  
you have  done t h e   r e t r i e v a l .  Is t h a t  a . . .. 3 

Conrath:.  That is  not  my impression of what  Backus  and Gi lber t  
o r i g i n a l l y  had i n  mind. 1 suppose you could  approach it from t h a t  
point  of  view. If you use  it a s  an  inversion method, t h e   r e t r i e v a l  
you g e t  depends on where you are on  the  trade-off  curve.  You have 
t o  choose  your  value  of  what I c a l l  "w" here.  

B a r k s t r o m :  How constant  is the  value  of  "w"? 

Conrath: What do you  mean  "how constant"? 

B a r k s t r o m :  I f  you choose a given  tolerance  on  your  retrieved  pro- 
f i l e ,  how constant  i s  the  value  of "w" across the  atmosphere? 

Conrath: You mean in   go ing  from one  sounding t o  another? 

B a r k s t r o m :  Going  from  one region  of  the  atmosphere  to  another. 

Conrath: Horizontally? 

B a r k s t r o m :  Presumably v e r t i c a l l y .  

Conrath: Ver t i ca l ly ,  you can  choose "w" d i f f e r e n t  a t  d i f f e r e n t  
l eve l s .   I n   t he  type of  Backus-Gilbert method I have  outlined  here, 
you e s sen t i a l ly   do   t he   ana lys i s  a t  each  individual   level   inde-  
pendent of a l l  o the r   l eve l s .  

B a r k s t r o m :  Yes, and  then i f  you set the   t o l e rance  on t h e   r e t r i e v e  
p r o f i l e  a t  some pa r t i cu la r   va lue  . . . 
Conrath: No, "w" would change  with  height   in   general ,  

F l e m i n g :  J u s t   t o  go  back t o  Roland Drayson's comments, I th ink  it 
is  a matter  of how you t reat  your   kernel   funct ion.   I f  you l i n e a r i z e  
the  Planck  function, you g e t  a f ac to r   de r iva t ive  of the  Planck 
funct ion  with respect t o  temperature .   In   that  case, i f  you simply 
redefine  your  kernel  functions t o  inc lude   the   o r ig ina l   wai t ing  
funct ion times t h a t   f a c t o r  and ca l l  t h a t  new quant i ty   the   kerne l  
function,  then,  indeed,  the  kernel i s  temperature  dependent  and 
then  the  resolving power w i l l  be a function  of  temperature.  But, 
i f  you use   the  method  of D r .  Chahine,   he   specif ical ly   objects  t o  
l inear iz ing  the  Planck  funct ion,  i n  which case, he  must l i ve   w i th  
the  or iginal   weight ing  funct ion which i s  temperature  independent, 
except   for   there  i s  a dependence  but in   another   sense .   In  which 
case, I would have t o  agree  with D r .  Conrath. 
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Conra th :  I th ink   what   you ' re ta lk ingabout   essent ia l ly  i s  a kernel  
of the  form  (d.r/dx x dB/dT) . 
Fleming:  Y e s .  I n   t h a t  case, it becomes temperature  dependent. 
I f  you ac tua l ly   def ine   your   kerne l   func t ions   tha t  way, then you 
have  included a temperature  dependence  and I would,  of  course,  have 
t o  agree  with D r .  Chahine. 

S u s s k i n d :  I ' m  a l i t t l e  confused  about what you mean  by "resolut ion."  
I j u s t  want t o  ask a very  simple  question. Say w e  have a range of 
atmosphere  10  scale  heights  and you have  10  measurements. Is it 
poss ib le  t o  have a resolution  of  better  than  one scale height? Can 
you by t h i s  Backus-Gilbert  theory show t h e  optimw is be t te r   than  
one scale o r  you'd  be showing my 10  measurements  aren'-t  really a l l  
that   independent and maybe I can  only  get  two scale   heights?  I 
mean, is  it poss ib le   to   have  more resolut ion  than you have  measure- 
ments i n   t h e   r a n g e   i n  which you are t r y i n g   t o  measure  things? 

Conra th :  I think  the  answer is  no. 

S u s s k i n d :  I should  think so too,   but  I wasn ' t   qu i te   c lear .  So i n  
other  words you could  only  be  degrading what you think you have? 

Conrath:  Tha t ' s   r i gh t .  

S u s s k i n d :  Not doing  any  better  than what it appears  to  be.  A l l  
r i g h t ,  SO you ' re   ta lking  about   the optimum  number of independent 
things you can  think you measure,  and  not  do  any  better. Good. 

193 





INVERSION  OF  IPJFRAmD  LIMB  EMISSION 

MEASUREMENTS FOR TEMPERATURE  AND 

TRACE  GAS  CONCENTRATIONS 

John C.  Gille  and  Paul L. Bailey 
Nat iona l  Center f o r  A tmospher i c   Research  

Limb e m i s s i o n   m e a s u r e m e n t s   a r e   c h a r a c t e r i z e d   b y   s h a r p  
w e i g h t i n g   f u n c t i o n s   a t   h i g h   a l t i t u d e s ,   a n d  f o r  t e m p e r a t u r e  
d e t e r m i n a t i o n s ,   s t r o n g 1  y non l inear   dependence  o f  the 
w e i g h t i n g   f u n c t i o n  on the t e m p e r a t u r e .   S e v e r a l   m e t h o d s  for 
i n v e r t i n g  this t y p e   o f   m e a s u r e m e n t   h a v e  been d e s c r i b e d   a n d  
u s e d ,   i n c l u d i n g   i t e r a t i v e ,   s t a t i s t i c a l ,   n o n l i n e a r   a n d  
a p p r o x i m a t e   d i r e c t   a p p r o a c h e s .  These approaches  w i l l  be 
d e s c r i b e d ;   a d v a n t a g e s   a n d   d i s a d v a n t a g e s  of e a c h  w i l l  be 
o u t l i n e d .  

I.  INTRODUCTION 

In  techniques  utilizing  limb  emission,  often  called  the  limb 

scanning  approach,  the  data  for  inversion  are  measurements  of  the 

radiance  emitted  by  the  atmosphere,  made  while  a  passive  radiometer 

scans  from  the  planet  to  space  across  the  planetary  limb.  The 

change  in  geometry  changes  the  inversion  problem  from  that  for 

downward  or  nadir  viewing  instruments,  most  importantly  by  making 

the  problem  of  temperature  determination  strongly  nonlinear,  but 

more  agreeably  by  yielding  narrower  weighting  functions. 

The  geometry of limb  radiance  measurements  is  shown  in  Fig. 1. 

The  advantages  of  the  technique,  which  follow  from  the  geometry, 

have  been  described  by  Gille  and  House  (Ref. 1) [herein  referred 

to  as  GH].  They  need  be  summarized  only  briefly  here.  First, 
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RAY.  PATH L -  h f - (TANGENT PT. 

TO 
HEIGHT \ SATELLITE 

Fig. 1. The geometry-of limb scanning. 

because  of  the  geometry,  there is  no  contr ibut ion from  atmospheric 

l aye r s  below the  lowest  point  along  the  ray  path.   Because  of  the 

rapid  drop  of  atmospheric  density  above  the  lowe,st  point,  called 

the  tangent   point ,   very  narrow  weight ing  funct ions  resul t .  

Secondly,   the  long  slant pat11 leads  t o  more emitter  along a pa th  

through a g iven   a l t i t ude ,   and ,   t hus ,   s ens i t i v i ty  t o  h i g h e r   a l t i -  

tudes. A third  advantage is  t h a t   t h e   c o l d  background of space 

means t h a t  a l l  the   s igna ls   o r ig ina te   in   the   a tmosphere ,  and no 

v a r i a b i l i t y   c a n   b e   a t t r i b u t e d   t o   t h e  background. 

Because t h e   v e r t i c a l   r e s o l u t i o n  is  coming  from the  geometric 

e f f e c t s   i n  a real in s t rumen t ,   t he   ve r t i ca l   f i e ld   o f ' v i ew must  be 

as narrow as prac t icable   to   ob ta in   the   advantages  of the  inherent  

h igh   ve r t i ca l   r e so lu t ion .  However, t he  spectral width  can be made 

very  broad i n   o r d e r   t o   g e t  more s i g n a l .   T h i s   i l l u s t r a t e s  a general  

tendency  for  geometric  and spat ia l  e f f e c t s  t o  p l a y   t h e   r o l e  i n  
limb scanning  that  spectral effects   do  in   nadir   sounding.   In  

operation,  the  radiometer  samples  the  atmospheric  signal many times 

during  the  scan across t h e  limb. 
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The equation from  which the  outgoing  l imb  radiation i s  cal- 

culated i s  given as 

where  N(h) is  the  radiance  received when looking a t  tangent   point  

h, B is the  Planck  function, x i s  the coordinate  along  the  ray  path,  

and  .r(h, x) i s  the  transmittance  between  the  spacecraft   and  the 

po in t  x along a path  through  h.  By converting  from a hor izonta l  

t o  a v e r t i c a l   i n t e g r a l ;  and  rearranging terms, one  obtains 

where z is the   ve r t i ca l   coo rd ina te ,  c is  the  concentration  of  the 

absorber  gas, p the  atmospheric  density,  a the  amount of  absorber 
along  the  ray  path between the  a tmospheric   level   and  the  satel l i te ,  

and subscr ip ts  a and p r e f e r   t o   p o i n t s  on the   ray   pa th   an te r ior  and 

pos te r ior   to   the   t angent   po in t .   Equat ion  ( 2 )  can be wr i t ten  

N(h) = B(z)W(z,  h)dz Jl 
where W is  the  weighting  function which t e l l s  how  much the   l eve l  z 

contr ibutes   to   radiat ion  observed  a long a pa th  whose lowest  point 

is  h. 

Weighting  functions  for  an  ideal  instrument  with  an  infin- 

i t e s i m a l   f i e l d  of  view  have  been presented  for  a broad  carbon 

dioxide  channel by GH. They typ ica l ly  have  widths a t  the   ha l f -  

power poin ts   in   the   o rder   o f  3 km. These are for   an   idea l   ins t ru-  

ment with  an  inf ini tes imal   f ie ld   of   view.   For  a real instrument, 

with a nominal 2 km f i e l d  of v i e w ,  the  weighting  functions are as 

shown in   F ig .  2.  Note t h a t  as a r e s u l t  of  convolving  the  infini-  

tesimal  weighting  functions  with a f i n i t e   f i e l d  of v i e w ,  t h e  

weighting  function i s  now about 5km wide. 
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h 
FINITE  FIELD  OF  VIEW 
(C02, 585-705( l/cm) 

WEIGHTING  FUNCTION, l / k m  

F i g .  2.  W e i g h t i n g   f u n c t i o n s  f o r  X m b  s c a n n i n g ,  w i t h  a f i n i t e  

f i e l d  of v i e w .  The f i e l d  o f  view h a s  a Gauss ian   shape ,   and  

nominal  2 km w i d t h .  

The important   thing  to   note  is that   the   weight ing  funct ion 

depends  strongly  on  the  density a t  the  tangent  point.   This i s  the 

reason  for   the  major   nonl inear i ty;  t.hrough the  hydrostat ic   equat ion,  

temperature a t  l e v e l s  below a geometric  level w i l l  a f f e c t   t h e  

pressure  and  density a t  the  level ,   and,   therefore ,   change  the 

weighting  function.  This i s  what makes the  temperature  determi- 

nat ion from  limb  radiance  measurements  the  strongly  nonlinear 

problem t h a t  it is. 

Weight ing  funct ions  for   t race  const i tuents ,   such as ozone, 

have  been  calculated by G i l l e  and others  (Ref.  2 )  and by R u s s e l l  

and  Drayson  (Ref. 3 ) .  They also  display  the  narrow  width  expected 

i n   t h e  limb geometry. Once the   t empera ture   p rof i le  i s  determined, 

t he  trace gas  concentration  measurements are a s t ra ightforward,  

nea r ly   l i nea r  problem as in   the   nadi r   v iewing  case. 
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First t o  be presented   in   th i s   paper  w i l l  be r e s u l t s  and 

thoughts  on  the  information  content  of  limb  radiance  measurements. 

T h i s  w i l l  be  followed by a descr ip t ion  of four  inversion  techniques 

currently  being  actively  pursued. 

A t  t h i s  time, an  operational method for   inver t ing   the   da ta  

obtained from the  Nimbus 6 Limb Radiance  Inversion  Radiometer 

(LRIR) i s  being  developed.  In  a few  months, it is  expected  that  

much more definit ive  comparisons between the  different   techniques 

and quant i ta t ive  resul ts   confirming  the  technique,  and e s t ab l i sh ing  

t h e  accuracy  of  the  results,  w i l l  be available.   In  the  concluding 

sec t ion ,  some pre l iminary   resu l t s  of the  recovery  of  temperature 

and ozone p r o f i l e s  from the   da t a   a r e  shown. 

11. INFORMATION CONTENT OF LIMB RADIANCE MEASUREMENTS 

It i s  d e s i r a b l e   t o  be ab le   t o   a s ses s   t he  amount of information 

i n  a s e t  of  measurements, in  order  to  guide  algorithm  development, 

and to   ensu re   t ha t   t he re  is  a  reasonable  match  between  the  effort 

t h a t  goes in to   the   invers ion  and the  information  contained i n  the  

radiance  data .  A technique  to  determine  the  information  content 

has  been  described by G i l l e  and Bailey  (Ref. 4 ) .  It w i l l  be 

summarized very   b r ie f ly   here .  

I n  t ha t   r e f e rence ,  it was po in ted   ou t   t ha t   t h ree   e f f ec t s  have 

the  potent ia l   to   degrade  the  information  that  is contained i n  a 

s e t  of radiance measurements. First, r a d i a t i v e   t r a n s f e r   i t s e l f  

t e n d s   t o   o b l i t e r a t e  some d e t a i l .  Second, t h e  c h a r a c t e r i s t i c s  of 

the  measuring  instrument w i l l  add fu r the r  smoothing  and reduction 

of   information.   Final ly ,   the   re t r ieval  may also  reduce  the  infor-  

mation t h a t  still remains. I n  t h e   r e f e r e n c e   c i t e d ,   t h e   f i r s t  two 

e f f e c t s  were studied. 

The method was t o   c a l c u l a t e   t h e  change in   the  outgoing  radi-  

ance  due to   s inusoidal   temperature   per turbat ions  with 2 K amplitude 

and vertical   wavelengths from 2 t o  1 4  Ian. It  became c l e a r   t h a t   t h e  
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features  with  shorter  wavelengths are g rea t ly   a t t enua ted  compared 

wi th   l a rger   d i s turbances   jus t  by t h e   r a d i a t i v e   t r a n s f e r  process. 

mis i s  what  one  would expect when considering  the  width of t he  

weight ing  funct ions,   even  for   an  inf ini tes imal   f ie ld   of   view.  

The instrument  f ield  of  view  response may be  approximated  by 

a Gaussian,  for  which  one can c a l c u l a t e   a n a l y t i c a l l y  a smoothing  of 

the   s igna l .  One f i n d s   t h a t  small v e r t i c a l   s c a l e s   a r e   f u r t h e r  

reduced. By comparing  these  with  the  effects of instrumental   noise 

and the   e f f ec t s   o f  imprecise sample spacing,  one  can  determine what 

ver t ical   wavelengths  are j u s t  a t  t h e  noise level.  (This   can  a lso 

be  used t o  determine how frequent ly   the  radiance  prof i le   needs t o  

be  sampled for   given  instrument   character is t ics . )   Final ly ,   because 

the re  i s  a trade-off between  instrument  f ield  of view and noise ,  it 

is poss ib le  t o  determine  the  opt imal   f ie ld   of   view  for  a given 

appl ica t ion .  

Another way of  looking a t  t h i s  i s  t o  perform a s p e c t r a l  decom- 

posit ion  of limb scanning  measurements. An example  of  such a spec- 

trum is  shown i n   F i g .  3 ,  i n  which the  amplitude  of  the  components 

are p l o t t e d   a g a i n s t  spatial frequency.  For  the Nimbus 6 geometry, 

one  cycle per mi l l i r ad ian  is a wave of 4 km v e r t i c a l   e x t e n t ;  0.5 

cycle  per mi l l i r ad ian  is, therefore ,  a wave with 8 km wavelength. 

From the  previous  discussion,  it w i l l  be  recognized  that  the 

amplitude  of  the  signal a t  high  frequencies  contains  only  noise,  

and t h a t   t h e r e  is no information  about  the  atmosphere  contained a t  

these  frequencies.  One  may then  apply  an optimal f i l t e r  ( R e f .  5) 

t o  determine what the  real   amplitude  might  be.   In  Fig.  3 ,  t he  

circles represent   the   unf i l te red   s igna l ,   whereas   the  symbol F indi-  

cates the  resul t   of   applying  an  opt imal  filter. If one knows some- 

thing  about  the  modulation  transfer  function  of  the  instrument,  

then  one can do a c e r t a i n  amount of  boosting  of  the  middle  fre- 

quencies ( t o  compensate f o r   t h e  smoothing  introduced'by  the  instru- 

ment). It i s  even  possible  that  the  atmospheric  smoothing  can  be 

p a r t i a l l y  compensated.  Clearly,  however, one must  have a high 
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CYCLES  PER  MILLIRADIAN 

F i g .  3 .  A m p l i t u d e   s p e c t r u m  of the narrow CO channe l  limb 2 
r a d i a n c e   p r o f i l e .  Circles i n d i c a t e  the o r i g i n a l   s p e c t r u m ;  F ' s  

show the s p e c t r u m   a f t e r   o p t i m a l  f i l t e r  i s  a p p l i e d .  

s igna l   t o   no i se   r a t io   i n   o rde r   t o   be   r easonab ly   conf iden t   t ha t   one  

is  actual ly   increasing  the  real ism of the  reconstructed  radiance 

p ro f i l e .  

111. ITERATIVE INVERSION TECHNIQUE 

The equat ion  for   the  l imb  radiance  prof i le   can  be  t ransformed 

to (GH) 

x exp [-R-' g T ( z ' ) d z ' ]  T(z) - l  dz S 
z 
0 
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where the   p ressure  p i s  a t   t h e   r e f e r e n c e  level z The exponential 

terms show the   e f fec t   o f   the   hydros ta t ic   equa t ion  on the  pressure,  

and the  nonlinear  dependence  of  radiance  on  the  temperature  pro- 

f i l e .  Because  of t h i s ,  and the  sharply  peaked  weighting  function, 

GH u t i l i zed   the   i t e ra t ive   invers ion .   t echnique  of the Chahine  type. 

This i s  ve ry   fu l ly   desc r ibed   i n  GH.  and w i l l  not  be  gone  into i n  

g rea t e r   de t a i l   he re .  Some fea tu res  of t h e   i t e r a t i v e  scheme a r e  

presented i n  Ref'6.  Perhaps  most  interesting is  t h a t   f o r   t h e  

implementation  used by GH, a l though  radiance  res iduals   cont inue  to  

drop  with  continued  i teration,  temperature  errors went through  a 

m i n i m u m  and then  began t o  grow. Another f ea tu re  was t h a t  i n  ea r ly  

stages  of t h e  i t e r a t i o n   r a d i a n c e   r e s i d u a l s   o s c i l l a t e d   a s  a function 

of i t e r a t i o n  number,  presumably as  the  atmosphere  "sloshed"  while 

it ad jus t ed   i t s e l f   t o   t he   hydros t a t i c   equa t ion .  

0 0' 

T h i s  method gives  good r e s u l t s ,  which are  nearly  independent 

of t h e   i n i t i a l   g u e s s .  The major  problem a s   f a r   a s   r e d u c i n g  a 

la rge  amount of da t a ,  however, is the   l a rge  number of i t e r a t i o n s  

requi red   to   d r ive   the   res idua ls  below the   roo t  mean square (rms) 

radiance  error .  An i t e ra t ive   approach  must  be made v e r y   f a s t   i n  

order   to   p rocess   l a rge  amounts  of da ta .  

e 

\ 

G i l l e  and others  (Ref.  2 )  a l so   appl ied   the   i t e ra t ive   invers ion  

to   cons t i t uen t   p ro f i l e s .  For t h i s  problem,  the  resul ts  were f a i r l y  

f a s t  i n  terms  of  the number of i t e r a t ions ;   on ly  two t o   f o u r   i t e r a -  

t i o n s  were genera l ly   requi red   to   ge t  t h e  r e s idua l s  below the  

radiometr ic   error .  However, t he   ca l cu la t ion  of the  radiance is 

still a  very  time-consuming  process. Two v a r i a t i o n s  of t h i s  

approach  might be noted;   Gil le  and others  (Ref.  2 )  corrected  the 

p r o f i l e   a t  each  level,  based  only on the  measurement a t   t h a t   l e v e l .  

Tallamraju  (Ref. 7 )  used  a  corrector  for a l e v e l  based on a l l   t h e  

radiances.  
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IV. DIRECT INVERSION 

I n   t h e   e a r l y   s t u d i e s  o f  the  limb  radiance  problem, it w a s  

recognized  that  a s imple  f i rs t -order   inversion method w a s  poss ib le  

due t o  the  highly  local ized  nature  of the  weighting  function 

(Ref. 8 ) .  This  behavior  provided  the  motivation  for  the  corrector 

equa t ion   i n   t he   i t e r a t ive  scheme used by GH. More recent ly ,  a 

similar principle  has  been  suggested  for  use  with  pressure modu- 

lated  l imb  scanning  radiometer  proposed  for Nimbus G.  

As described by House and  Ohring  (Ref. 8 ) ,  the  radiance a t  

a tangent  height h may be  approximated by 

where E(h) i s  the  effect ive  a tmosphere  emit tance.   I f   the   emit tance 

is  known, the  temperature may be recovered from the  Planck  func- 

t ion.   I f   the   const i tuent   concentrat ion is  sought,  the  temperature 

must  be known as w e l l  as a re la t ionship  between  emittance  and 

mixing r a t i o .  

For  an  isothermal,  constant  mixing  ratio  atmosphere  with  con- 

s tant   absorpt ion,   the   emit tance i s  given by  Burn and  Upplinger 

(Ref. 9 )  

where p ( h )  is the  pressure a t  tangent  height  h,  W is  the  mixing 

r a t i o ,  T is  the  temperature,  and K i s  the   absorp t ion   coef f ic ien t .  

The loca l iza t ion   of   the   rad iance   cont r ibu t ion   to   the   v ic in i ty  

of   the  tangent   point  i s  such   t ha t   v i r tua l ly  a l l  the  radiance 

comes from within two scale heights  of the   t angent   po in t   for  

moderate or weak absorption. On the  order  of 80 t o  90% comes from 

within one scale height   of   the   tangent   point .   In  a more realist ic 

s i tua t ion ,  where the   absorp t ion   coef f ic ien t  is d i r ec t ly   p ropor t iona l  

t o  pressure ,   the   degree   o f   loca l iza t ion  w i l l  be  enhanced  since  the 

largest pressures  occur a t  the  tangent   point .  The radiance a t  
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tangent  height  h  should  then be approximated by the  form 

where the   va r i ab le s   ? (h )  and W(h) represent  temperature and  mixing 

r a t i o  averaged i n  some manner over  the  region of t he  atmosphere 

from which the   rad iance   a r i ses .  By assuming t h e   r a d i a n c e   a l l  comes 

from w i t h i n  one scale   height  of the  tangent   point ,  

where A ( z )  i s  an arbitrary  weight  depending upon the   op t i ca l  

c h a r a c t e r i s t i c s  of t he  atmosphere i n  t h e   v i c i n i t y  of h .  

The e f fec t ive   absorp t ion   coef f ic ien t  may be d i f f i c u l t   t o  

accurately  specify and could  most  easily  be  obtained  empirically 

from detai led  forward  radiance  calculat ions.  The most  useful  form, 

however, i s  t o  have the  effect ive  emit tance  specif ied  in   terms of 

the  atmospheric  variable of i n t e r e s t  

I n  the  case of C02, the  mixing r a t i o   p r o f i l e  is assumed t o  be 

globally  uniform and does  not need t o  be considered  expl ic i t ly .  

Temperature va r i ab i l i t y   a l so   appea r s   t o  be  of  second  order  impor- 

tance and can be neglec ted   as   an   expl ic i t   parameter .   This   resu l t s  

i n  a  simple  relationship 

N(p) = g ( F ( p ) ) E ( p )  (10) 

where E(?)  i s  the  instrument  response  weighted  Planck  function, 

which may be parameterized and inverted  to   give T ( E )  . The E (p)   a re  

determined from Eq. (9) by calculating  N(p) and ? (using Eq. 8) 

f o r  a s e t  of  atmospheres. The e f fec t ive   emiss iv i ty   for  LRIR 
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.1 1. Iir, 

PRESSURE, mb 

F i g .  4 .  E f f e c t i v e   e m i s s i v i t y   o f  the n a r r o w   c a r b o n   d i o x i d e  

channel  for m i d l a t i t u d e  summer s tandard   a tmosphere ,  a s  a f u n c t i o n  

of p r e s s u r e .  (1 b a r  = 100 kPa.) 
I t  

Channel 1 (narrow CO ) i s  shown i n  Fig.  4 for   the  summer mid- 

lati tude  standard  atmosphere.  The e f f ec t ive   emis s iv i t i e s   fo r   o the r  

atmospheres f a l l   v e r y   c l o s e   t o   t h e  same curve. The e f f e c t i v e  

emiss iv i ty   for  Channel 2 (broad CO ) has  a  similar  shape,  but is 

displaced toward  lower emissivi ty  and higher  pressures.  

2 

2 

It can  be  seen tha t   va lues   for   the   emiss iv i ty  become g rea t e r  

than  one  as  the  channel becomes opaque. I n   r e a l i t y ,   t h e   e f f e c t i v e  

temperature  for  these  pressures  should be derived from g much 

deeper  layer  of  the  atmosphere  which is  appreciably warmer than 

the  region  near  the  tangent  point.  
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For  nonuniformly mixed cons t i tuents ,  Eq. (9) is  so lved   for  

E (p, ?, w) , which is then   in te rpre ted  t o  give as a function of 

pressure .   Invers ion   for  temperature using a uniformly mixed  con- 

s t i t u e n t   l i k e  CO can  proceed i n  several ways. I f   t he   r ad iance  

N(p) i s  known a t  pressure  p,  the  emissivity  and  hence,  5 (5 (p) 

and ?(p) can be obta ined   d i rec t ly .  

2 

If the   rad iance  is  known t o  correspond t o  some weighted tern- 

perature ,   the   pressure  corresponding t o  the   r e su l t i ng   emis s iv i ty  

can be obtained  from  the  emissivity  curve.   For  consti tuents  such 

as ozone,  the  mixing  ratio  can  be  obtained if the  radiance is 

known t o  correspond  to  a specified  temperature and pressure.   In 

t h i s   s i t u a t i o n ,  it is  conven ien t   t o   f i t   emi t t ance   i n   t he  form shown 

i n  Eq. (7)  

In   appl ica t ion ,  

of   e i ther  temperature or 
c02 

radiance w i l l ,  not  be known as a, function 

pressure.  Both parameters must  be  deter- 

mined  from observations made i n  two d i f f e r e n t   s p e c t r a l   c h a n n e l s   i n  

the  15-vm C 0 2  band having  different  optical  proper t ies .  

If   both  channels.are  looking a t  a level   in   the  a tmosphere 

where  one  of the  channels i s  becoming opavJe ,   the   e f fec t ive   rad ia-  

t ing  temperature  of  the opaque  channel is ve ry   c lose   t o   t he  atmo- 

spheric  temperature a t  t h a t   l e v e l .  By using  this   temperature ,   the  

emissivity  for  the  transparent  channel  and  hence  the  pressure a t  

t h a t   l e v e l  may be  determined. If the  angular   separat ions between 

samples  on  the  radiance  profiles are known, t h e   e n t i r e   p r o f i l e   o f  

e f fec t ive   t empera ture   aga ins t   p ressure  may be  reconstructed by 

applying  the  hydrostatic  equation,  the  spectrally  weighted  Planck 

funct ion,  and the  curves   of   emissivi ty   against   pressure.   This  i s  

shown schemat ica l ly   in   F ig .  5. 

Depending  upon the  averaging  function A ( z )  used  in Eq. (8) , 
the  T (6) p r o f i l e  may be sh i f t ed  an appropriate  amount i n  P t o  
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Narrow Channel Saturation 

" 

T) T 

with T known 

p ( ho) determined 

from ~ ~ ( p )  vs  p curve 

RADIANCE 

F i g .  5 .  Schematic of  the  direct  inversion scheme, Point 

where  narrow channel i s  saturated  allows  determination of the 

temperature,  from w h i c h  the broad channel emissivity E ( p ) ,  and, 

therefore, p (ho) = po may be determined. 
2 

provide  an  estimate  of  the  T(p)  profile.  Thus, the  technique  has 

g r e a t   p o t e n t i a l   f o r   p r o v i d i n g   i n i t i a l   p r o f i l e s   f o r  more exact 

inversion schemes. 

Once the  temperature  and  pressure  profiles  have  been  deter- 

mined, a s t ra ightforward  appl icat ion of  Eqs. (9)  and ( 1 2 )  can  be 

used t o  obtain w (p) . Again, a sh i f t   i n   p re s su re   compa t ib l e   w i th  

the  weights  used  in Eq.  ( 8 )  w i l l  resul t   in   an  approximate W(P) pro- 

f i l e .  

V. STATISTICAL  RFTRIEVALS 

Another  approach  which w e  have  explored is  the  use  of sta- 

t i s t ica l  r e l a t ionsh ips .   I f  one writes the  measured radiances as a 

column vec tor ,   the   rad ia t ive   t ransfer   equa t ion  may be  writ ten 
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N(hi) = C .  .B  
11 j 

where the  B ' s  are the  Planck  funct ions,   subscr ipts   indicate   levels  

and contains   the  information  about   the  dis t r ibut ion  of  material 

(including  the  hydrostatic  equation)  and  transmittance of the  gases.  

I n   t h i s  form, C i s  required t o  include most of   the   nonl inear i ty .  

Th i s   coe f f i c i en t  matrix can  be  calculated  from  synthetic  data,   cal-  

cu la t ed   i n   t u rn  from a wide  range  of  atmospheric  profiles. Once 

it i s  known, it can  be  appl ied  to   real   data   to   determine  the  Planck 

function  and,  therefore,  the  temperature. It  i s  a ra ther   empir ica l  

approach,  but it appears t o  work moderately w e l l  and it was very 

f a s t .  

j 

,-lJ 

A problem  with t h i s  approach i s  t h a t  by pu t t ing  a l l  the  

non l inea r i ty   i n to   t he   coe f f i c i en t   ma t r ix ,   one  may be l e f t   w i t h  

la rger   e r rors   than   des i red .  A more i n t e r e s t i n g   i d e a   t o  expand the  

t rue  limb rad iance   p ro f i l e  as a linear  combination  of  approximate 

(nonl inear)   radiance  prof i les  

Here t h e  tactics are t o  inco rpora t e   t he   non l inea r i ty   i n  a known, 

in t e rp re t ab le  way i n t o  N and to  keep D l i nea r  o r   n e a r l y  so. A 

spec ia l  case may be noted--when D = fjiij, w e  again have t h e   d i r e c t  i j  
invers ion ,   descr ibed   ear l ie r .  When the  elements  of D a r e  found by 

A i j  

regression,   then we have a f u l l   l i n e a r i z e d   s t a t i s t i c a l   i n v e r s i o n .  

Now, by applying D , BE is  determined. By knowing p, E and 

B are immediately known.  The nonl inear i ty  i s  now incorpora ted   in  

the  E (p) . The t r i c k  i s  t o   f i n d   t h e   b e s t  way to   i ncp rpora t e  a 

l a rge   pa r t   o f   t he   non l inea r i ty   i n   an   ana ly t i ca l ly  manageable  form 

so tlhat, a f t e r  a l inear   invers ion ,   the   nonl inear  form may be 

ana ly t i ca l ly   i n t e rp re t ed   w i th  small errors. 

-1 

Some pre l iminary   resu l t s   ind ica te   tha t  Eq. (13)  does  indeed 

give somewhat b e t t e r  resul ts  than Eq. ( 1 2 )  for  temperature, .  and 

considerably  bet ter   for   ozone.  One of   the  problems  that   tends  to  
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F i g .  6 .  P r e l i m i n a r y   t e m p e r a t u r e   r e t r i e v a l  for  W a l l o p s   I s l a n d  

for  29 J u l y  1975 compared w i t h  i n - s i t u   m e a s u r e m e n t s .  The solid 

l i n e  i s  the rocketsonde p l u s   r a d i o s o n d e   m e a s u r e m e n t ,   m a d e   a t  1803 

Greenwich mean t i m e  ( G M T ) .  T h e  p o i n t s   a r e   f r o m  t w o  r e t r i e v a l s  of 

limb r a d i a n c e  for the LRIR over p a s s   a t  1737 GMT. x ' s  and 0's a r e  

f o r  r e t r i e v a l s  before and a f t e r  a correction for a t m o s p h e r i c  non- 

s p h e r i c i t y .  (1 b a r  = 100 kPa .) 

a r i s e ,  however, i s  that   a l though one  can deal   with 75% of the  atmo- 

spher ic   cases   fa i r ly   wel l ,   the   o ther  25% (which includes  things 

l ike   s t ra tospher ic   warn ings  and o ther   in te res t ing   cases)  are not  

handled  well. It is  very  desirable  to  develop a technique  that  is  

general  enough to   handle  a l l  these  cases  without  requiring  separate 

treatment. 
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OZONE M I X I N G  RATIO, PPMV 

Fig. 7. Preliminary ozone retrieval for Wallops  Island  for 

29 July 1975,  compared  with in-situ measurements. The  points  are 

based OR a Krueger optical rocketsonde  launched at 1717  GMT, a 

Hilsenrath chemiluminescent  rocketsonde launched  at 1920 GMT  and  a 

balloon ozonesonde launched at 2051 GMT. The solid line is from 

the retrieval of LRIR radiances measured  at 1737 GMT. 

(1 bar = 100 kPa.) 
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V I .  CONCLUDING REMARKS 

A s  noted  above, many months of real d a t a   a r e  now i n   t h e   p r o c e s s  

of being  analyzed. Much of t h e  past year  has  been  spent i n  pro- 

cess ing   the  r a w  da t a   i n   o rde r  t o  have  good,  calibrated  radiances 

with which t o  work. A t  p resent ,  a search i s  being  conducted  for 

an  inversion method t h a t  w i l l  have t h e   a b i l i t y  t o  ex t r ac t   t he   l a rge  

amount of information  contained  in   the  l imb  scans,   but   with  accept-  

ab le  computer  time. 

A s  an  indicat ion of t h e   e r o g r e s s   t o   d a t e ,  and the  information 

obtainable by limb  scanning,  Figs. 6 and 7 show temperature  and 

ozone r e t r i eva l s ,   r e spec t ive ly ,  a t  Wallops  Island  in  July,  1975. 

They a r e  compared with  rocket  soundings  taken  within  three  hours 

of t h e   s a t e l l i t e   o v e r p a s s .  The temperature  profile  and  the  rocket 

are in   reasonably good agreement  from 25 t o  55 km. The root-mean- 

square (rms) e r r o r  is  about3  Kwhich i s  c lose  to  the  experiment 

object ive.   Similar ly ,   the   ozone  prof i le   in   Fig.  7 looks  very 

reasonable .   I f  one takes   the  percentage  difference between the  

ozone r e t r i e v a l  and the   op t ica l   rocke t  measurement a t  each  level ,  

and  then  takes  the rms value  of   that   percentage  difference,  one 

g e t s  14%. This i s  close  to  the  claimed  accuracy of the  rocket  

instrument. 

1 

These r e su l t s   t o   da t e   g ive   u s   g rea t   con f idence   t ha t   t he   i n f r a -  

red limb scanning  approach is  very  powerful and technica l ly  

f eas ib l e .  They also i n d i c a t e   t h a t   t h e   d a t a   q u a l i t y  from LRIR is  

such   tha t   l a rge  amounts  of new da ta  w i l l  be   ava i l ab le   t o   r e f ine  

limb  scanning  techniques  and to  study  the  upper  atmosphere  in 

h i ther to   unobta inable   de ta i l .  

-__ ~. . - . . . . . . . . . . . . 

'See Footnote 1 in  Discussions.  
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SYMBOLS 

9 gravi ta t iona l   acce le ra t ion  

NT 

NA 

t rue  limb radiance 

approximate limb radiance 

R gas  constant  €or a i r  
T temperature 

X coordinate  along  the  ray  path 
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DISCUSSIONS 

King:  As you know the  geometry of limb viewing  t runcates   the 
kernel  which  has  the  effect  of  imposing  the  tangent  height as t h e  
bound of your   in tens i ty  integral .  T h i s   f i n i t e  bound converts   the  
in t eg ra l   equa t ion  from a F r e d h o l m  t o  a Volterra type. Now f o r  
f a i r l y   g e n e r a l  classes of kernels  of t h i s   t r u n c a t e d  type, the  
Volterra   equat ion  has   direct   solut ions  which  do no t  involve  matrix 
inversions.  One could  progressively work down t o   r e t r i e v e   t h e  
temperature ,   i f   the   t rue  a tmospheric   kernel  is  suf f ic ien t ly   approxi -  
mated  by a so luble  class of  Volterra  kernels.  Have you t r i e d   t h i s ?  

G i l l e :  N o t  e x p l i c i t l y .  I think  one  of  the  major  problems is, 
f i r s t  of a l l ,  knowing where you are s t a r t i n g .   I f  you have t h a t  
point,  then  working  up  and down from t h e r e  is  what I descr ibed   in  
the  case  of  what we c a l l e d   t h e   d i r e c t  method. I f  one  already  has 
radiance as a function  of  pressure  (which i s  the  hard pa r t ) ,  then 
working down would be the  "onion  peeling"  approach,  which i s  
equ iva len t   t o   i nve r t ing  a diagonal  matrix.  We have  done a l i t t l e  
work on t h i s ,  and  expect t o  do more.  There i s  a problem  with  sensi- 
t i v i t y   t o   n o i s e  a t  the   t op   l eve l s .  We have  not   t r ied  anything  l ike 
an  analytic  approach  because  the  transmittances  are  not  accurately 
approximated  by  closed form expressions.  It sounds l i k e  something 
worth  looking  into,  however. 

C h a h i n e :  I have two quest ions and  one comment.  Your weighting 
funct ions are t h e  most beaut i fu l   weight ing   func t ions   tha t  I have 
seen  today. They might   not   be   aesthet ic   but   they are mathematically 
beaut i fu l .  I would l i k e   t o  have  seen a comparison  between the  
r e su l t s   ob ta ined  by the   t h ree   o r   fou r  methods you have  described. 
I f  you t r i e d   t h e   r e l a x a t i o n  and the  emissivity  approach, would you 
ge t   l a rge   va r i a t ions   i n   your   so lu t ion?  

G i l l e :  I th ink   the   var ia t ions  would be r a t h e r  small. I think  one 
of  the  major  differences would be  computer t i m e ,  which night  be 
r a the r   d i f f e ren t   fo r   d i f f e ren t   k inds   o f   app roaches .  We don't  have 
that  kind  of  comparison.  That's  one  of  the  things I was al luding 
t o  when I s a i d   i n  two o r   t h r e e  months I th ink  we w i l l  have a good 
dea l  more. I th ink  many of  these are now g e t t i n g   t o   t h e   p o i n t  
where w e  c a n   t r y  them not  only on synthet ic   data   but   on some of the  
real da t a  and see how w e l l  they  do. 

C h a h i n e :  The second  question i s  on the   emiss iv i ty   coef f ic ien ts  you 
have  described. And you have  said  they are fairly  independent  of 
temperature. I am surprised  because  in   the  s t ra tosphere you can 
have la rge   var ia t ions   in   t empera ture ,  from  day t o  day or season to  
season. Were you ab le   to   de te rmine   tha t   the   emiss iv i ty   coef f ic ien t  
r e a l l y  w a s  a weak funct ion  of   temperature   even  for   var ia t ions  of  
20 degrees? 
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Gille:  The f i r \ s t   o rder   e f fec t  is  t h a t   i f  you are looking a t  a geo- 
metric a l t i tude ,   the   a tmospher ic   p ressure   o r   dens i ty  varies as t h e  
temperature  changes,through  hydrostatic  adjustinent.  ,That is  t h e  
thing you take   ou t  by p lo t t ing   versus   p ressure .  Then it i s  t K n g s  
l i ke   t he   va r i a t ion   o f   l i ne   i n t ens i t i e s   ove r   t he  band,  and  changes 
in   the   in tens i t ies   o f   over tone   bands   tha t  matter. While these  
e f f e c t s  make a difference,   they  don ' t   add a l o t  of  spread t o   t h e  
emiss iv i t ies .  

S u s s k i n d :  Is it broad  banded? 

G i l l e :  Y e s ,  the  channels are quite broad,  of  the  order 100-200 c m - l .  

Mateer:  I w a s  a l i t t l e  d isappoin ted   tha t  you d i d n ' t  show any 
r e su l t s   o f  ozone p r o f i l e s ,  ~ o h n .  1 

G i l l e :  The focus  of  this  meeting  has  been on  methods  and I f e l t  I 
should  ta lk   about   methods  ra ther   than  resul ts ,  C a r l .  Also, I w a s  
involved  in  a NASA meeting a t  NCAR u n t i l   j u s t   b e f o r e  I l e f t ,  and 
some s l i d e s  I meant t o   b r i n g  were inadver tan t ly   l e f t   behind .  Our 
ozone prof i les ,   a l though I c a n ' t  show  you one,  look  quite  reason- 
able .  W e  have r e s u l t s  from  about 2 0  km up t o  55 km, with a m a x i m u m  
i n  mixing r a t i o  between 30-35 km in  mid-lati tudes. .  We have a few 
cases  of  simultaneous  rocket  data  for  comparison,  but  have  only 
looked  hard a t  a comparison  from  Wallops  Island  where  there w a s  a 
s imultaneous  f l ight  by  two rocket  ozone  sensors. The sa te l l i t e  
and rocke t   r e t r i eva l s  had an rms percentage  difference between 
20 and 50 km of 14%. That is  about what is  claimed for   the  accuracy 
of  the  rocket  measurements. 

Kaplan: I am surprised,  C a r l ,  t h a t  you haven't  asked him about  the 
va r i a t ion  from  day  and night  and a t   t w i l i g h t  and dawn! D o  you have 
any r e s u l t s  on  ozone  changes? 

G i l l e :  The ozone  top a t  t he  moment is  a t  about 55 kilometers and 
we don't   see  any  extremely  large  effects  there.   There  could  be 
effects   of   perhaps 20 percent .  We're still checking it out .  

Kaplan: Do you see, or don ' t  you want t o   s ay   ye t ,  dawn and t w i -  
l i g h t   e f f e c t s  a t  a l l ?  

G i l l e :  We appear   not   to   see them. I n   f a c t ,  I can t e l l  you one 
problem that   does   occur .  W e  look a t  the  day  side,  looking  back 
not   a long   the   o rb i t   p lane   bu t  300 o f f  it, nor th   t o   sou th  a t  a 

~~ 

'In response to  D r .  Mateer' s comment, the  authors  included, 

a f t e r  the Workshop, t h e i r  ozone   re t r ieva l   resu l t s   (F ig .  7) - 
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g iven   a l t i t ude .  Going south  on  the  night   s ide,  w e  are .looking 
south   to   nor th .  Some d i f f e rences  between  day  and  night  are  due  to 
the  fact   that   the   viewing  geometry is s l i g h t l y   d i f f e r e n t  and  one 
can see small e f f ec t s   o f   g rad ien t s ,   bu t  a t  t h e   a l t i t u d e s  we are 
t a lk ing  a.bout t h o s e   e f f e c t s  are not   there .  By and l a rge ,  up t o  
55 there   does  not  seem t o  be any   ve ry   s ign i f i can t   e f f ec t .  What 
W e  r e a l l y  want t o  do i s  push up a l i t t l e  b i t   h i g h e r  and I th ink  
t h e   s i g n a l   t o   n o i s e   r a t i o  w i l l  a l low  us   to   do  it. I th ink   there  
we ought t o  be   ab le   t o  do it, 
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INVERSION  OF  SCATTEFED  RADIANCE HORIZON 

PROFILES  FOR  GASEOUS  CONCENTRATIONS 

AND  AEROSOL  PARAMETERS 

Harvey  L.  Malchow  and  Cynthia K. Whitney 
C h a r l e s   S t a r k   D r a p e r   L a b o r a t o r y ,  Inc. 

This p a p e r   p r e s e n t s   t e c h n i q u e s   t h a t   h a v e  been d e v e l o p e d  
and  used t o  invert l i m b   s c a n   m e a s u r e m e n t s  f o r  v e r t i c a l   p r o -  
f i l e s  o f  a t m o s p h e r i c   s t a t e   p a r a m e t e r s .  The p a r a m e t e r s  which 
c a n  be f o u n d   a r e   c o n c e n t r a t i o n s  o f  R a y l e i g h   s c a t t e r e r s ,  ozone, 
No2, a n d   a e r o s o l s ,   a n d   a e r o s o l   p h y s i c a l   p r o p e r t i e s   i n c l u d i n g  
a J u n g e - s i z e   d i s t r i b u t i o n   p a r a m e t e r   a n d   r e a l   a n d   i m a g i n a r y  
p a r t s  o f  the index o f  r e f r a c t i o n .  The novel t e c h n i q u e s   d e v e l o p e d  
f o r  this p r o b l e m   s h o u l d  be o f  interest  f o r  n o n l i n e a r   n u m e r i c a l  
s e a r c h   p r o b l e m s  i n  g e n e r a l .  

I. INTRODUCTION 

There  is  growing  scientific  opinion  that  physical  processes 

in  the  earth's  stratosphere  are  of  vital  importance  to  man  and  the 

biosphere,  and  that  far  too  little  is  understood  about  these  proc- 

esses.  Examples  include  the  interactions  and  the  resulting 

balance  between  stratospheric  ozone, NO2 and  aerosols,  which 

affect  the  ultraviolet  radiation  and  the  temperature  environment 

at  the  Earth's  surface. It  is widely  appreciated  that  a  proper 

understanding  of  these  phenomena  and  their  consequences  will 

require  a  significant  body  of  new  experimental  data,  and  that  the 

scope  of  the  requirement is such  that  remote  sensing  by  satellite 

offers  the  most  practical  approach. 
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A variety  of  remote  sensing  techniques  based on radiometric 

data  is  available  for  stratospheric  monitoring.  It  is  possible  to 

consider  any  combination of extinction,  emission,and  scattering as 

potential  signal  generating  phenomena.  Furthermore,  in  the  cases 

of  emission  and  scattering,  it  is  possible  to  consider  any  com- 

bination  of  vertical,  horizontal,  or  inclined  scan  directions  for 

obtaining  the  information. 

This  paper  reports  on  new  data  processing  techniques  that 

were  developed  for  one  of  the  many  possible  stratospheric  monitoring 

techniques. It is  anticipated,  however,  that  some  of  the  tech- 

niques  presented  here  will  be  useful  for  the  other  types  of  experi- 

ments  as  well. 

In  the  problem  addressed  here,  the  measurements  consist  of 

multispectral  limb  scans  of  visible  scattered  sunlight.  Figure 1 

illustrates  the  experiment  geometry,  and  Fig. 2 illustrates a 

typical s i m u l a t e d  "measurement  data"  set.  These  measurements  are 

inverted  for  the a t m o s p h e r i c   s t a t e ,  which  is  comprised  of  vertical 
profiles  of  atmospheric  parameters,  within  the  altitude  regime of 

Incidence Solar 
Irradiance 

Detector 
Line of 

Scattering Scattered 
Atmosphere Radiance 
/ 

Fig .  1.  S c a t t e r e d   r a d i a n c e  limb scan   geome t ry .  
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Fig. 2. 

b 
Scan Angle 

Mu1 tispectral  Limb  Scan  Measurements. 

observations.  The  parameters  are  the  concentrations  of  Rayleigh 

scatterers,  ozone, NO and  aerosols,  and  the  aerosol  physical  pro- 

perties,  such  as  Junge  size  distribution  parameter  (within  the 

optically  active  size  rangeland  the  real  and  imaginary  parts of index 

of refraction. 

2 

Inclusion  of so many  state  parameters  may  seem  ambitious,  but 

this  is  necessary  because  they  are  all  optically  active  over  the 

same  band  of  visible  wavelengths.  Therefore,  it  is  not  possible 

to  invert  for  a  subset of these  parameters  except  by  assuming 

values  for  the  remaining  ones.  The  ability  to  treat  them a l l  is, 

in  fact,  a  significant  advantage  of  the  limb  scan  experiment. 

Examples of the  inversion  results  for  simulated  experiments  are 

presented  here  to  demonstrate  the  viability  of  the  inversion  tech- 

nique. 
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11. GENERAL FRAMEWORK 

The  limb  scan  inversion  problem  has  some  features  which  are 

similar tof and  some  which  are  different  from,  other  inversion' 

problems  in  atmospheric  sciences.  The  purpose of this  section  is 

to  set  a  framework  for  discussing  the limb scan  problem  by  focus- 

sing  on  those  features  which  are  shared  with  other  inversion  prob- 

lems, and  to  note  the  standard  techniques  which  are  applicable  to 

them. 

A major  similarity  between  the  limb  scan  and  other  inversion 

problems  is  the  inevitable  presence of noise  in  the  measurements. 

Let  x  represent  the  actual  atmospheric  state,  and  z(x 1 represent 

the  measurement  as  predicted  from  the  state.  The  actual  measure- 

ment  observed  is 

a  a 

z = z(x ) + n a 

where  n  represents  noise.  The  above  is  called  the  measurement 

equation.  If  linearized  about  some  x  by  Taylor  expansion  with  the 

partial  derivative H, it  takes  the  same  form  as  that  which  occurs 

in  many  other  inversion  problems  where  a  Fredholm  integral  is 

replaced  by  a  quadrature: 

0 

[ x a - x ]   + n  
0 

The  problem  of  extracting  the  state x from  this  equation  has  been 

approached  in  various  ways  by  Deutsch  (Ref. 1') , Twomey  (Ref. 2) 

Mateer  (Ref. 3 ) ,  Westwater  and  Strand  (Ref. 4), mdgers (Ref. 5 )  

and  others. 

a 

The  presence  of  noise  suggests  that  a  stdchastic  approach  to 

the  problem  is  appropriate.  In  fact,  one  can  argue  that  not  only 

are  the  measurements  random  variables  due  to  the  noise,  but  also 

that  the  state  is  a  random  variable  drawn  from  an  ensemble  of 

possible  states.  The  well-known  theory  of  optimal'estimation 

offers  a  general  framework  for  addressing  most  such  inversion  prob- 

lems,  and  it  is,  in  fact,  the  approach  adapted  here  to  the  limb 
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scan  inversion  problem.  This  common  point  of  departure i s  reviewed 

and  related  to  other  work  in  the  remainder  of  this  section. 

A way  of  defining  an  optical  state  estimate  is  suggested  by 

the  Gauss-Markov  theorem,  which  states  that  a  minimum  variance, 

unbiased  estimate  of x can  be  obtained  as  a  linear  function  of 

measurements  by  minimizing  a  Euclidian  distance.  Various  authors 

use  various  names  for  the  construct  playing  this  role.  One  common 

name  is  "cost  function,"  expressing  the  desirability  of  minimizing 

it.  Defining  a  Euclidian  distance  generally  requir.es  two  basic 

choices:  the  quantities  to  measure  the  distance  between,  and  the 

positive  definite  metric  to  use.  This  means  choosing  the  terms  to 

put  in  the  cost  function,  and  the  weights  to  give  them.  These 

choices  are  resoJved  by  considering  what  is  done  with  the  cost 

function. 

a 

A typical  way  to  minimize  the  cost  function  is  to  differentiate 

with  respect  to  the  state  estimate,  set  the  derivative  to  zero, 

and  solve  for  the  estimate.  To  provide  an  estimate  that  can  actu- 

ally  be  evaluated, it  is  necessary  that  the  cost  function  involve 

only known variables  (and  not,  for  instance,  the  unknown  actual 

state). A well-defined  estimate  is  guaranteed  by  requiring  that 

each  term  in  the  cost  function  involve  the  deviation  between  a 

known  value  of  a  quantity  and  the  known  value  that  quantity  would 

be  expected  to  have  if  the  state  were  known  to  be  equal  to  the 

estimate.  Typically,  each  such  term  is  multiplied  by  the  inverse 

of  the  variance  of  that  quantity.  That  is,  distance  is  measured 

between  known  values  and  expected  values  that  depend  on  the  state 

estimate  and  variances  define  the  metric  coefficients. 

In  the  limb  scan  problem,  there  are  many  atmospheric  param- 

eters  in  the  state  and  many  wavelength  channels  and  altitudes  €or 

measurement. It  is appropriate  to  use  vectors  for  state  and 

measurement,  and  covariance  matrices  for  expressing  uncertainties 

of  each.  With 
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‘a = actual  vector  quantity 

<q> = vector  quantity  expected  if  state = estimate 

C = quantity  covariance 
q 

the  typical  cost  function  term  is 

where  T  indicates  transpose. 

Generally,  the  measurement  vector  contributes  the  leading 

term  in  the  cost  function.  Some  authors  include  various  additional 

terms  as  well.  Often  there  is  a  term  representing  a  prior  esti- 

mate  of  the  state  vector.  It  should  be  noted  that  exclusion o f  

such  a  term  is  only  a  special  case:  zero  prior  estimate  and  infi- 

nite  prior  covariance.  The  fact  that  the  prior  estimate  is  always 

implicitly  present  makes  the  optimal  estimation  procedure  poten- 

tially  recursive.  The  optimal  state  estimate  and  its  covariance 

obtained  after  one  batch  of  data  could  be  used  as  the  prior  esti- 

mate  and  covariance  before  another  batch  of  data. 

This  idea of recursion  leads  naturally  to  consideration  of 

cases  where  the  state is evolving  with  some  running  variable  v. 

(Examples  of  such  a  variable  include  scattering  particle  radius, 

scattering  angle,  altitude,  longitude,  latitude,  and  time.)  When 

there  is  evolution,  it  may  be  appropriate  that  the  prior  estimate 

at  v  be  determined  or  at  least  modified  by  the  posterior  estimate 

at v - Av. This  is  accomplished  by  some  authors  by  including  terms 

in  the  cost  function  representing  one  or  more  derivatives  of  the 

state  with  respect  to  the  running  variable.  These  terms  have  the 

same  effect  as  modifying  the  prior  estimate  at  v  to  align  better 

with  the  posterior  estimate  at  v - Av; thus,  the  posterior  esti- 
mate  at  v  is  also  closer  to  that  at v - Av,  and  the  whole  function 
is  more  smoothly  behaved.  In  the  case  of  the  limb  scan  inversion, 

the  point of the  experiment  is  to  find  excursions from rather  than 
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parameters of a  smooth  model, so no  smoothing  is  involved,  and  no 

derivative  terms  appear  in  the  cost  function. 

The  following  notation  will  be  a  convenient  basis  for  subse- 

quent  discussion.  Let  the  vector  x  be  the  state  estimate  and  the 

matrix P be  its  covariance.  The  prior  state  estimate  is  x  with  a 
'L 0 

covariance P Because  of  noise,  the  measurement  vector z has  a 

covariance  matrix R. If  the  state  were,  indeed,  known  to  be  equal 

to x, then  the  expected  values  of  x  and z would  be x and  z(x). 

The  cost  function  is  thus 

%O - 
% 

0 

Cost  function = ( z  - z (x)) (2 - z(x)) T R-l 
% 

+ (x, - XIT zo (xo - x) -1 

With  z(x)  linearized  about  x  and  with  partial  derivative 
0 

matrix 3, the  optimal  state  estimate  is  found  to  be 
x = x + 'LK(z - z(xo)) 0 

where 

Intuitively  reasonable  behavior  for  K is demonstrated  by  noting 

that  for  large  noise  covariance R, K is  small  and  x  is  largely 

determined  by  x  The  measurement  has  influence  only  in  proportion 

to  its  trustworthiness. 

% 

% L  

0' 

The  gain  matrix  K  is  sometimes  called  the  Kalman  gain  because 
% 

the  procedure  being  discussed  here  is  a  special  case  of  the  well- 

known  Kalman  filter  (Ref.6).  In  the  typical  Kalman  fi1,ter  problem, 

the  state  evolves  with  a  running  variable v, and  the  prior  estimate 

x  (v)  is  obtained  from  the  posterior  estimate  x(v - Av)  by  using  a 
dynamic  model  for  the  evolution  over  Av.  Use  of  such  a  dynamic 

model  can  have  the  effect  of  smoothing, so that  aspect  of  the 

Kalman  filter  formalism  has  not  been  applied  to  the limb scan  prob- 

lem. 

0 

223 



Once  the  optimal  state  estimate x is  determined,  its  covariance 

P follows  by  simply  substituting  the  expression  for x into  the  defi- 

nition 
% 

P = <(x - xa)s' 
% 

and  evaluating  the  expectations.  The  result  is 

The  covariance  update  provides  small 5 whenever E is  small.  For 
R =  0, 
% 

K H = P H  ( H P H )  
% %   % %  % % %  

T T -1 

Premultiplying  by 

and  rearranging  parentheses  establishes = & and x = 0 in  the , 

limit.  That  is,  there  is  no  uncertainty  at  all  concerning  the 

state  after a noiseless  measurement.  The P,, in  general,  represents 

residual  state  uncertainty  which  remains  because  the  measurement  was 

not  noise  free. 

In  the  case  of  highly  nonlinear  problems,  the  Taylor  series 

expansion  z(x) = z(x ) + (g) (x - x ) is  not  very  accurate  and 

as a result,  the  posterior  state  estimate  may  not  even  approximately 
0 0 

reproduce  the  observed  measurement.  The  stan$ard  technique  for 

overcoming  such a difficulty is to  make  many  iterations on the  sahe 

data,  with  the  partial  derivatives  and  the  state  estimate  (but  not 

the  covariance)  updated  at  each  iteration.  The  process  is  commonly 

called  multiple  local  iteration.  Iteration ieto be  distinguished 

from  recursion,  iteration  being  applied  to  overcome  nonlinearity  and 

recursion  being  applied  to  smooth  over  noise. 

The  above  remarks  review  the  standard  aspects  of  nonlinear 

optimal  estimation  that  are  applicable  to  the  limb  scan  inversion 

problem.  There  are,  however, a number  of  features of the  limb  scan 



inversion  problem  which  tend  to  distinguish  it  from  other  inversion 

problems  and  require  special  techniqaes.  These  are  the  subjects  of 

the  following  sections. 

111.  OVERCOMING  COMPUTATIONAL  PROBLEMS  ASSOCIATED  WITH  LIMB  SCANS 

IN  PARTICULAR 

Computational  problems  arise  in  the  limb  scan  inversion  prob- 

lem  because  of  requirements  to (1) perform  matrix,  inversions  in 

computing  the  optimal  state  estimate,  and (2) perform  radiative 

trqsfer simulations  to  compute  expected  measurements  and  partial 

derivatives. 

The  required  matrix  inversions  are  difficult  first  because  of 

the  inherent  large  dimensionality  of  the  problem.  Typically  there 

may  be  from  ten  to  ane  hundred  scan  positions,  with  several  state 

variables  and  several  measurements  per  scan  position.  Rigorously, 

each  measurement  depends  on  every  one  of  the  state  variables.  This 

is  because  at  each  scan  position,  all  the  lower  atmosphere  pro- 

vides  a  source  for  multiply-scattered  photons,  whereas  all  the 

upper  atmosphere  contributes  to  and  damps $he received  signal. 

Thus,  in  a  completely  rigorous  inversion,  the  dimensionality  of 

covariance  and  partial  derivative  matrices  can  be  of  the  order  of 

hundreds  by  hundreds. 

The  solution  to  the  problem  of  large  dimensionality  lies  in 

approximations  that  replace  the  one  large  inversion,  with  its  many 

measurements  and  many  state  variables,  by  many  small  inversions, 

each  involving  just a few  measurements  and  a  few  state  variables. 

The  convenient  partitioning  is  by  scan  position;  the  state  variables 

at  the  tangent  altitude  of  a  given  scan  are  found  from  the  multi- 

spectral  radiance  measurements  at  that  scan.  The  effect  of  the 

upper  atmosphere  can  be  fully  accounted  for  by  making  the  state  a 

function of a  running  variable  v = altitude,  starting  the  inversion 

at the  top of the  atmosphere,  and  working  downward  from  there, so 

that  accurate  estimates  of  the  atmospheric  parameters  above  each 
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position  are  available.  The  lower  atmosphere  can  be  accounted for 

at  least  approximately  by  using  the  prior  estimate  for  it.  The 

overall  approach  is  colloquially  called  "onion  peeling." 

The  onion  peeling  technique  described  above  is  remarkably 

efficient  because  most of the  signal  received  at  each  scan  position 

comes  from  near  the  tangent  altitude.  This  is  the  case  because 

the  atmosphere  is  maximally  dense  near  the  tangent  altitude,  and 

because  the  geometric  length  of  the  line of sight  through  altitudes 

near  tangent is large.  Figure 3 plots  density  of  signal  contri- 

bution  against  slant  range  along  the  scan.  For  a  nearly  exponen- 

tially  decaying  atmosphere,  the  curve  is  nearly  Gaussian,  and  the 

width of .that  Gaussian  corresponds  to  a  small  altitude  increment 

because of the limb scan  geometry. 

Even  with  the  dimensionality of the  problem  reduced  by  the 

onion  peeling  described  above,  there  is  still  a  potential  diffi- 

culty  due  to  the  dynamic  range of the  variables.  It  is  possible, 

in  particular,  for  the  diagonal  entries  of  covariance  matrices  to 

be  of  significantly  different  magnitudes,  the  result  being  that 

the  required  matrix  inversions  are  numerically  difficult.  This 

Density of 
Signal Contribution 

. .. .. "W 
Slant Range Detector 

. .. .. "W 
Slant Range Detector 

Fig. 3. Scan  through Earth's Atmosphere 



difficulty  is,  however,  easily  circumvented  by  redefining  the 

variables. We  let  the  measurement  be  log  (radiance)  instead  of 

radiance,  and  correspondingly  we  let  the  state  elements  be  log 

(constituent  density) or log  (aerosol  physical  property), as the 

case  may  be. 

Radiative  transfer  simulations  are  required  in  the  limb  scan 

inversion  problem  to  produce  the  predicted  measurement  z(x)  and  the 

partial  derivative  matrix H. A first  problem  to  be  faced  in  per- 

forming  a  simulation is  that  the  aerosol  physical  properties  (Junge 

size  parameter  and  complex  refractive  index)  enter  the  radiative 

transfer  problem  only  indirectly,  through  the  resulting  optical 

properties  (phase  functions  and  cross  sections).  In  an  inversion 

procedure, it  is  not  practical  to  take  a  conventional  approach, 

calculating  the  aerosol  optical  properties  from  the  physical  pro- 

perties  with  a  Mie  code.  Instead,  a  precalculated  aerosol  model 

can  be  used.  The  model  used  here  consists  of  polynomial  coeffi- 

cients  obtained  from  multivariate  regression  of  a  large  data  base 

of  aerosol  optical  properties  calculated  from  physical  properties 

by  a  Mie  code.  In  milliseconds  of  computation,  the  resultant  model 

yields  values  of  phase  function,  scattering  cross  section  and 

absorption  cross  section,  given  Junge-size  parameter  and  complex 

index of refraction. 

For  the  limb  scan  situation,  the  calculation of measurement 

given  optical  state  is  still  a  nontrivial  problem.  The  process  is 

governed  by  a  complicated  integro-differential  equation  of  radia- 

tive  transfer  requiring  elaborate  computer  simulation.  The  curved 

geometry  inherent  in  the  problem  restricts  the  number of applicable 

computer  models,  and  at  present  only  two  accurate  techniques  are 

available:  Monte  Carlo  simulation  as  described  by  Collins  and  Wells 

(Ref. 7) and  DART  simulation  as  described  by  Whitney  (Ref. 8). 

Other  than  these,  there  is  only  a  simple  but  unrealistic  single 

scattering  approximation. 
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The  choice  of  which  of  the  available  radiative  transfer  models 

to  use  is  dictated  by  speed  requirements.  In  the  course  of  a  limb 

scan  inversion,  the  radiative  transfer  model  is  called  many  thou- 

sands  of  times.  The  number  of  calls  grows  multiplicatively  with 

the  number  of  wavelengths,  number  of  state  variables,  number  of 

iterations,  and  number  of  scan  positions,  and  typically  approaches 

lo5.  Therefore,  only  the  single  scattering  and  DART  models  are 

really  practical  to  use. 

Although  the  computational  difficulties  associated  with  limb 

scan  inversion  are  largely  circumvented  by  the  steps  described 

above,  there  remain  difficulties  associated  with  nonlinearity. 

These  are  of  a  fundamental  nature  not  particularly  limited  to  the 

limb  scan  problem.  Their  solution  is  described  in  the  next  section. 

IV.  ESTIMATING  PARTIAL  DERIVATIVES  FOR  NONLINEAR  INVERSIONS  IN 

GENERAL 

It  was  found  that  even  the  combined  application  of  all  the 

techniques  described  in  the  last  section  was  insufficient  to  pro- 

duce  a  scattered  limb  scan  inversion.  The  reason  is  the  extreme 

nonlinearity  of  the  radiative  transfer  over  the  dynamic  range  of 

the  state  variables  normally  encountered.  Because  nonlinearity  is 

a  characteristic  of  many  inversion  problems,  and  not  just  the  limb 

scan,  the  technique  for  overcoming  it  presented  here  may  be  f,ruit- 

fully  applied  to  other  nonlinear  problems  as  @ell. 

The  heart  of  the  problem  is  in  the  calculation  of  the  partial 

derivative  matrix H. The  radiative  transfer  is  sufficiently  non- 

linear  over  the  state  variable  excursions  required  that  the  usual 

idea  of  partial  derivative  is  not  suitable.  The  local  slope  of  a 

curve of radiance  against  state  variable  simply  does  not  follow 

the  curve  far  enough  to  be  used  as  an  accurate  basis  for  updating 

the  state. 

% 

Given  the  nonlinearities  of  the  problem,  we  are  likely  to 
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encounter  the  situations  illustrated  in  Figs.  4a  and  4b.  The 

radiance  as a function of number  density  of  aerosols  is  plotted 

as a sigmoid  curve.  The  left  asymptote  is  found  at  aerosol  densi- 

ties so low  that  the  radiance  is  entirely  determined  by  the  other 

atmospheric  constituents.  The  right  asymptote  is  found  at  aerosol 

densities so high  that  the  atmosphere  is  essentially  opaque. A 

measured  value of radiance  is  indicated  by  the  dashed  lines  in  the 

figures.  In  Fig.  4a,  the  prior  estimate  of  the  state is in a 

region  where  the  local  slope  is so small  that  the  updated  state 

estimate  resulting  from  that  slope  is  vastly  larger  than  the  actual 

state.  In  Fig.  4b,  the  prior  estimate  is  in a region  where  the 

' Log Radiance 
/ 

"""- measurement __ -A/- - - - -/- 

Prior Actual Estimated 
Estimate State State 

( a ) .  Overshoot due  t o  p a r t i a l   d e r i v a t i v e .  

Log Radiance .Local Slope 
measurement / 

Actual 
State 

State 
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l oca l   s lope  is  so l a rge   t ha t   t he   upda ted   s t a t e  estimate r e s u l t i n g  

from t h a t   s l o p e  is  much too   c lose  to t h e   p r i o r  estimate. It i s  

poss ib le   €or   the   overshoot ,   in   the  case of Fig.  4a, t o  throw  the 

problem  outside  the  numerical  operating  range  of  the  computer,  and 

it is poss ib l e   fo r   t he   unde r shoo t ,   i n   t he  case of Fig. 4b t o   i n t e r -  

minably  delay  convergence,  in  ei ther case making t h e  problem 

unsolvable   in  a p rac t i ca l   s ense .  

The remedy for  the  problems  described is t o   u s e  a der iva t ive-  

l i k e  cons t ruc t   t ha t  i s  more g l o b a l   i n  i t s  meaning than   the   loca l  

p a r t i a l   d e r i v a t i v e .  Such  a cons t ruc t  is determined by f i r s t  formu- 

l a t i n g  a mathematical model for   the  curves   of   radiance  as  a function 

of  the state parameter. To acknowledge the  changing  slope,   the 

radiance i s  modeled as a quadrat ic   funct ion  of   the  s ta te   parameter .  

Figure 5 i l l u s t r a t e s  how such a model can be f a i r ly   accu ra t e   ove r  a 

r eg ion   subs t an t i a l  enough to   inc lude   the   requi red   s ta te   excurs ions .  

The quadra t ic  model i s  ac tua l ly   cons t ruc ted  by the  fol lowing  s teps:  

1. Es tab l i sh   t he   p r io r   e s t ima te  of radiance,  based on the  

s t a t e   p r i o r   e s t i m a t e .  

2.  Per turb   the  state f one  standard  derivation, and ca l cu la t e  

S t a t e   A c t u a l  
P r io r  S t a t e  

Estimate 

/ 

/ 
1 Q u a d r a t i c   F i t  

/ 

Fig. 5. Q u a d r a t i c  fit.  
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the  perturbed  radiances. 

3. Fit a quadratic  curve  through  the  three  points. 

Thus,  the  model  is: 

z = a + b(xi - x ) + C(Xi - x2) 2 
i 2 

where i = 1, 2, 3 ,  and  the  coefficients  are  found  as: 

The  quadratic  model  is  the  basis  for  evaluating  a  derivative 

like  construct  that  is  more  global  in  its  meaning  then  the  local 

partial  derivative  is.  The  construct  is  evaluated  by  the  following 

algorithm. 

1. If  the  measurement  line  intersects  the  quadratic  model 

curve,  replace  the  partial  derivative  by  the  slope  of  the  line 

from  prior  estimate  point  to  the  nearest  intersection. 

2. If  the  measurement  line  does  not  intersect  the  quadratic 

model  curve,  replace  the  partial  derivative  by  the  slope  of  the 

line  from  prior  estimate  point  to  the  extremum  of  the  quadratic. 

V. SIMULATION ESULTS 

This  section  presents  inversion  results  for  a  simulated  limb 

scan  experiment. In the  simulation,  a  set  of  limb  radiances  is 

calculated  from  a  known  atmospheric  state.  These  radiances  are 

treated  as  "measurements"  and  inverted  to  retrieve  the  known  state. 

Seven  state  parameters  are  inverted,  namely: (1) concentration 

of  Rayleigh  scatterers; (2) concentration of ozone; ( 3 )  concentration 
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of   ni t rogen  dioxide;  (4) aerosol   ext inct ion;   (5)  aerosol Junge-- 

s i z e  parameter; (6) aerosol   re f rac t ive   index ,  real part; and 

(7) aerosol   refract ive  index,   imaginary part. Eight  wavelengths 

are used in   t he   i nve r s ion :  0.3500,  0.4000,  0.4500, 0.5000, 0.5500, 

0.6750, 0.7770, and 0.8630 pm. These were chosen t o  f a l l   w i t h i n  

the   sens i t ive  spectral range of a s i l icon  diode  detector ,   and a t  

the  same t i m e  to  involve  only  the  chosen  parameters as o p t i c a l l y  

active cons t i tuents .  The s p e c i f i c  problem  geometry  has  the  scan 

direct ion,   Ear th   centroid,   and sa te l l i t e  l y i n g   i n   t h e  same plane 

with  the Sun nearly  behind  the  detector so t h a t   t h e   s c a t t e r i n g  

angle  is  approximately 164 . For aerosol inve r s ion ,   t h i s  is a 

moderately good  geom'etry, i n   t h a t   t h e   a e r o s o l   a n g u l a r   s c a t t e r i n g  

funct ion is  roughly midway between i t s  highest   and  lowest  values.  

0 

For  each s ta te  parameter,  three  graphs  have  been  constructed. 

The f i r s t   d i s p l a y s   t h e  s ta te  parameter as a funct ion of a l t i t u d e ,  

the  second shows the  evolut ion  of   the  inverted state parameter as 

the   invers ion  process is recycled a t  a p a r t i c u l a r   s c a n   a l t i t u d e ,  

and the   t h i rd   d i sp l ays  error bars for  the  completed  inversion. 

The par t icular   graphs  presented were constructed  with  input  

noise  statist ics,  but   without   actual   noise   values .   Ideal ly ,   they 

should  be  representative of mean performance  with  zero mean noise ,  

and  the  error  bars should  descr ibe  the  spread  to   be  expected.  

Later runs  with  actual  random no i se   i nc luded   r equ i r ed   an   a r t i f i c i a l  

sca l ing  down of  the  gain by a fac tor   o f  5 t o  produce  the  anticipated 

behavior. 

The atmospheric   s ta te  i s  defined a t  a l t i t ude   i n t e rva l s   o f  1 

ki lometer ,   and   th ree   var ie t ies   o f  state are represented   in   the  

first graph.  These are: 

1. Pr io r  Estimate State--The f i r s t   guess ,   cons t ruc t ed  fram 

various  standard  sources which are compiled i n  Malchow (Ref. 9). 

This s ta te  is  represented by r e l a t i v e l y  smooth functions  of a l t i -  

tude. 
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2. True  State--This  is  the  state  that  is  used  to  produce  the 

simulated  measurements. It is  constructed  from  various  sources  of 

real  data,  except  for  the  aerosol  parameters,  which  are  chosen  by 

random  selection  from  what  is  considered a likely  range  of  varia- 

tion. 

3 .  Inverted  State--This  is  the  state  found  by  the  inversion 

process.  Since  no  noise  has  been  added  to  the  simulated  measure- 

ments,  this  state  is  identical  to  the  true  state  when  the  inversion 

is  perfect. 

The  scan  range  extends  from 22 to 13 kilometers.  For 22 kilometers 

and  above,  the  true  state  and  prior  estimate  state  are  set  equal 

in  order  to  focus  attention  on  the  inversion  process  itself  and  not 

the  consequences  of  initial  errors.  It  has  been  found  in  other 

simulations  that  such  initial  errors  can  be  overcome  in  approxi- 

mately  three  scans. 

The  second  graph  of  each  set  shows  the  path  followed  by  each 

parameter  through  state spaceenroute to  convergence.  Since  the 

limb  problem  is  highly  nonlinear,  many  iterations  of  the  inversion 

procedure  are  carried  out  at  each  scan  position.  The  convergence 

curve  represents  only  the 20 kilometer  scan  altitude.  For  this 

particular  altitude  it  can  be  seen  from  the  curves  that a stable 

solution  is  achieved  in 10 iterations.  However,  more  iterations 

are  needed  at  the  higher  altitudes. 

The  third  graph  of  each  set  shows  the  la  error  bars.  The 

error  bar  plotted  at 23 kilometers  represents  the  covariance  input 

to  the  problem.  The  error  bars  at  lower  altitudes  are  generally 

smaller,  having  been  reduced  by  the  information  gained  in  the 

inversion  process.  In  cases  wheEe  even  further  reduction  is 

desired,  avaraging  over  data  sets  can  be  employed. 

The  first  set  of  data  (Figs. 6, 7,and 8) is  for  Rayleigh  scat- 

terers  (also  called  neutral  density).  Since  this  constituent  has 

little  variability  relative  to  its  range  with  altitude,  the  prior 
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Altitude,  kilometers 

Fig. 6 .  Neutral density  solution. 
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Iteration  Number 

F i g .  7 .  N e u t r a l   d e n s i t y   c o n v e r g e n c e .  
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Altitude kilometers 

F i g .  8 .  N e u ' t r a l   d e n s i t y  error bars. 
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estimate  is  plotted  separately  from  the  inverted and true  states. 

The  first  graph  (Fig. 6) shows a good  tracking  of  the  true  state 

by  the  estimated  state.  At 20 kilometers  the  true  and  prior  esti- 

mate  states  differ  by 3% initially.  This  is  representative of a 

lo excursion.  After 8 iterations,  the  second  graph  (Fig. 7) shows 

close  convergence  to  the  true  state.  Error  bar  results  for  this 

constituent  (Fig. 8) show a small  reduction  of  initial  input 

uncertainty. 

The  second  set  of  data  (Figs. 9, 10, and 11) is  concerned  with 

ozone  concentrations.  The  true  ozone  state  (based  on  data  from 

Ref. lo), is  marked  by  strong  perturbations  both  up  and  down  from 

the  prior  estimate.  However,  ozone  is  strongly  represented  in  the 

simulated  measurements  at  the  chosen  scan  altitudes,  with  the 

result  that  this  constituent  can  be  inverted  quite  accurately  as 

the  inverted  and  true  states  show.  At 20 kilometers?  the  initial 

perturbation  was  about -50%. The  initial  uncertainty  assumed  for 

ozone  is 10 = 60%, and  the  inversion  reduces  this  by a factor  of 

3 or 4. 

The  next  set  of  graphs  (Figs. 12, 13, and 14) is  concerned  with 

NO2. This  constituent  has  relatively  small  prior  estimate  (Ref. 

11) optical  depths  for  the  chosen  scan  altitude  regime  and  the 

true  state  (based  on  our SKYLAB measurements)  is  even  smaller. 

Therefore,  one  expects  and  gets  less  accuracy  €or NO in  the 

inversion  than for ozone.  The  error  bars  show a modest  reduction 

from  the  assumed  initial  uncertainty  of lo = 300%. 

2 

Aerosol  extinction  is  the  subject  of  the  next  set  of  graphs 
(Figs. 15, 16, and 17). In  this  case,  the  prior  estimate  curve  is 

based  on  Elterman's  data  (Ref. 1 2 ) .  The  true  state  is  constructed 

from  lidar  data  (Ref. 13), and  shows  layered  structure.  Since 

Since  aerosol  extinction  exhibits a great  deal of spatial  dynamics, 

it  is  important  that  the  inversion  process  can  deal  with a large 

range  of  extinction  values.  This  particular  inversion  problem  shows 

that  order of magnitude  changes  in  aerosol  extinction  over a 1 
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Altitudq kilometers 

Fig. 9. Ozone solution. 
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Fig. 10.  Ozone convergence. 
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Fig. 11. Ozone 
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Altitude, kilometers 

F i g .  12. Nitrogen  Dioxide  Solution. 
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Simulated  Limb  Scan  Inversion 
For  Seven  Atmospheric  Parameters 

C. S. Draper  Laboratory, Inc. 

S250682 

11 October 1976 

AEROSOL EXTINCTION 
0 

(with  reference  crossection  at  5500  A) 

Input  Data 
Actual  State - LIDAR + lo-' x Elterman 
Reference  State - lo-' x Elterman 
Noise - 0.1% Maximum  Signal 
Geometry - Skylab 
Iterations - 20 
Scan  Altitude - 20 kilometers 

J 
F i g .  16.  Aerosol extinction convergence. 
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F i g .  17.  Aerosol extinction error b a r s .  
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kilometer  interval  can  be  dealt  with  by  the  nonlinear  algorithm. 

The  error  bars  for  aerosol  extinction  show  a  reduction  of  the 

initial  order of magnitude  uncertainty  by  as  much as a  factor  of 

50.  

The final  three  sets  of  graphs  (Figs. 18 to 26). are  con- 

cerned  with  inversion of aerosol  physical  parameters. A note- 

worthy  feature  of  these  graphs  is  that  the  inversion  accuracy  for 

these  parameters  is  proportional  to  the  aerosol  extinction. In 

each  case,  the  closest  agreement  between  the  true  and  inverted 

states  occurs at  the  peaks  in  aerosol  extinction.  Graphs  of 

aerosol  extinction  have  been  superposed  on  the  error  bar  graphs  to 

illustrate  this  point.  The  results  show  th?t  when  moderate  aerosol 

concentrations  are  present,  useful  information  about  the  aerosol 

physical  characteristics  can  be  obtained  from  limb  scans. 

In  general,  the  simulated  measurement  calculations  displayed 

here  demonstrate  that  sufficient  information  is  present  in  the  con- 

sidered  wavelength  set  to  separate  and  invert  the  studied 

constituents. An important  next  step  in  the  simulation  studies 

will  be to relate  the  expected  inversion  accuracy  to  the  quality 

of  the  measurements.  Other  potential  error  sources  that  will 

require  analysis  include  albedo  uncertainties,  modeling  errors, 

such  as  those  from  quadrature  in  the  radiative  transfer  calcu- 

lations,  and  errors  in  the  constituent  cross-section  averages 

over  finite  wavelength  intervals. 
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F i g .  23.  Aerosol real refractive index error bars. 
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For Seven  Atmospheric  Parameters 

C. S. Draper  Laboratory,  Inc. 

S250682 

11 October 1976 

AEROSOL IMAGINARY REFRACTIVE INDEX 

Input.  Data 
l c t u a l  State - Signi f icant   Imaginary   Index  
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Fig .  25. Aerosol i m a g i n e r y   r e f r a c t i v e   i n d e x   c o n v e r g e n c e .  
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Fig .  26. Aerosol imaginary refractive index  error bars. 
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V I .  C0NQ;uDING REMARKS 

This paper has demonstrated the  feasibility of inverting 

multispectral horizon profile radiance data at   a l t i tude inter- 

vals of 1 kilometer for number densities of  Rayleigh scatterers, 

ozone, NO2, and aerosols, and for  aerosol  physical  properties 

including a  size  distribution par-ter and the complex index of 

refraction. This is the f i r s t  demonstration of a remote sensing 

technique that would provide a l l  this information simultaneously 

on a  global  basis and w i t h  a l l  the  correlations. 

The inversion technique i tself  extends standard  nonlinear 

estimation  theory i n  order to acconrmodate the limb scan problem. 

A crucial  aspect of the extension is the use of a  derivative-like 

construct which is more global i n  its meaning than the  local 

partial  derivative. Nonlinear estimation  theory extended i n  this 

way apparently constitutes  the  first numerical search technique 

based on a  construct  other than the  local  partial  derivative- 

The multi-spectral horizon profile renote  sensing technique 

and the extended nonlinear  inversion technique together imply data 

requirements and,  hence, specifications  for  a high quality radio- 

meter. In conjunction with the analysis and simulation effort 

reported  here, Charles Stark Draper Laboratory has designed an 

instrument specifically to meet the implied requirements. 

a  scalar  coefficient 

b  scalar  coefficient 

C scalar  coefficient 

C covariance of q 

D determinant 
q 

B 
I identity matrix 

partial derivative m a t r i x  

% 
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DISCUSSION 

Twit ty :  First,  your results are really  incredible. I missed  some- 
where just what went' into this. what is your input from which you 
are extracting all of these parameters? What spectral  inputs  and 
what scattering  information? 

Malchow: We are assuming  that there is a multi-channel  photometer 
that  has  eight wavelength channels of information ranging  from 
4000 to 7000 b. The ban: width of each channel is rather  narrow, 
something  like 20 or 50 A. It depends somewhat on the  instrument 
design. 

Chahine: What are you measuring? 

Malchow: We are  doing scans of the sunlit limb. 

T w i t t y :  So this is through the limb with  the Sun in one specific 
place? 

Whitney: It doesn't matter where the Sun is. Sun  can be  anywhere. 

T w i t t y :  For  the results  you show here, the Sun was way  overhead? 

Malchow: It was somewhat  behind  and off to the side. 

Whitney: It  happened to be what was in that Skylab experiment. 
We  constructed the geometry  accordingly. 

G i l l e :  Do you  have any data from Skylab or other similar kind of 
experiments that you can test this on? ' 

Malchow: We have Skylab data but  it is really bad. First of all, 
the channels are not  calibrated relative to  one another  because 
there was a rush to get the instrument onto the, spacecraft.  They 
were calibrating  it  at WoodsHole or somewhere when the calibration 
light bulb  burned out. They  could  not get another one before the 
instrument  had to go on the spacecraft. So they  did  try to cali- 
brate it  but with about 10% uncertainty  in one channel or another. 
We cannot really work with that much noise. If the noise leveis 
were lower, we could  probably fit it to a clean'atmosphere at 
higher  altitudes,  but the present noise levels are just too large. 

Herman: I think what is puzzling  some people here is the question 
of whether these were simulated measurements or not. They were 
simulated, am I correct? 

Malchow: Yes. 
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Herman: Now  to  do  this,  apparently  you  must  have  performed  cal- 
culations  using,  let's  say, a Junge  size  distribution? 

Malchow: Yes. 

Herman: Now  suppose  the  actual  size  distribution  is  non-Junge. 
That  would  throw  everything  off,  am I correct? 

Malchow: Yes,  indeed. 

Herman: Now  the  other  thing  is  you  were  able  to  extract  more  this 
way  than  we  can  from  ground-based  measurements  and I am trying  to 
figure  out  why.  There  must  be  something  in  your  computer  simu- 
lation  that is enabling  you  to  reproduce  all  these  various  variables 
more  accurately  than  can  be  achieved  in  practice. 

Malchow: I think  one of the  advantages  over  the  ground-based  data 
problem  is  that  in  the  stratosphere  we  are  not  looking  through  as 
much  atmosphere  as  on  the  way  in  or  out. So we're  getting  more 
signal  from  the  particular  layer  that  we  are  looking  at  relative 
to  the  total  signal  thzt  we  are  getting. As to  the  question  of 
whether  the  Junge-size  parameter  is  relevant  or  nat,  in  any  of 
these  inversion  processes  you  find  what  you  are  looking  for.  If 
you'put in  six  parameters  to  describe  the  state,  you  find  six 
parameters. All we  have  done  is  an  exercise  with  the  simplest 
analytic  model  that  gave  us  some  kind of information  about  the 
aerosol  size  distribution. 

U n i d e n t i f i e d   S p e a k e r :  Where  are  the  errors  involved? 

W h i t n e y :  There  were  error  statistics  in  the  measurement,  which 
did  not  actually  perturb  the  measurements.  That  would  be  the 
desirable  thing  to do, namely,  to  run  through  that  exercise.1 

Malchow: Yes,  all  we  have  shown  is a closed  problem  in  effect. 

Reagan: To  amplify a little  bit  on  what  Dr.  Herman  was  talking 
about, I am curious  about  the  globality  or  the  global  ability  for 
the  optimization  to  home  in  and  along  with  that I would  like  to 
ask a question  about  the  sequence  that  you  went  about for say 
determining  refractive  index  and  size.  Was  it  sequential?  Was 
it  simultaneous? 

W h i t n e y  : Yes,  simultaneous. 

. - - - . . - - 
'Post-FJorkshop  comments  added  by  the  authors--"We  were  able 

to  do  that soon after  the  Workshop.  We  found  that  preservingthe 
stability  required  cutting  the  gain  by a factor  of  five.'' 
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Reagan: Also, i f  you changed  things a b i t  and you still came up 
wi th   the  same r e s u l t s ,   t h a t  would, it seems, say  something  about 
t he   g loba l i t y   o f  it. 

Irvine:  You have  assumed t h a t  you have  values   of   the   intensi ty  
measured i n  a. two-dimensional  altitude  and  frequency plane. How 
much do  the parameters t h a t  you are looking   for   in f luence   the  
i n t e n s i t y   i n   d i f f e r e n t   p o r t i o n s  of t h a t   p l a n e  so t h a t  you g e t  
some separat ion  there? 

Whitney: Well, for ins tance ,   the  NO2 t e n d s   t o  be i n  a l a y e r   t h a t  
i s  a t  a d i f fe ren t   a l t i tude   than   the   ozone ,   and  aerosols have t h e i r  
own cha rac t e r i s t i c s   w i th   a l t i t udes .  

I rvine:  And t h e r e  is different  wavelength  dependence  too? 

Whitney: Correct.  The var ious   cons t i tuents  are a c t i v e  a t  d i f -  
ferent  wavelengths.  We have  not  yet  conducted a channel  optimiza- 
t i o n  and t h a t  i s  an exercise t h a t  must  be  done. I be l i eve   t ha t  
t h e   o n l y   b a s i s   f o r  working  with  those  particular  wavelengths shown 
here is  tha t   they   cor respond  to  what w a s  in   the   Skylab   da ta .  

I rv ine :  Can I ask you something  else? What percentage  abundance 
of NO2 can you hopeful ly   detect?  What mixing  ra t io? 

Malchow: A s  you s a w  i n   o u r   r e s u l t s ,  w e  are g e t t i n g   i n t o   d i f f i -  
c u l t i e s   w i t h   t h e   l e v e l s   t h a t  w e  used i n   t h i s  experiment. The 
numbers t h a t  appear on  those  graphs are g e t t i n g  down to   about   the  
lower limit of  what you can  deal  with.  

I rv ine :  And w a s  that.  something  like  one par t  i n  lo1'? 

Malchow: I d p n ' t  remember what the  mixing ra t io  w a s .  I can show 
you what the   ac tua l   dens i ty   va lues  were. But I would s a y   t h a t   f o r  
nominal NO2 it i s  probably  shaky i n  t he   a l t i t ude   r eg ion  where w e  
did  the  inversion.  

Whitney: T h a t ' s   p r e t t y   f a r  away from  where it is  peaked. 

I rv ine :  Does one  have  any  hope  of de tec t ing  some of the  compounds 
t h a t  are r e l a t e d  to  t h e  ozone  abundance--the  fluorocarbons  and  the 
ClO and  th ings   l ike   tha t?  

Whitney: I t end   t o  be  doubtful  with  the  wavelengths we used 
because  there is  a l i m i t  t o  how  many independent  wavelengths  there 
r e a l l y  are. And you cannot  look  for more b i t s  of information  than 
are r e a l l y   t h e r e .  

She t t le :  I have a question  regarding  the  relation  of  your error 
bars   to   the   accuracy  of  your  convergence. Your f i t t e d   v a l u e s  seem 
t o  converge  within a small f ract ion  of   the error bars you  show. 

262 



I 

Whitney: That  is  because  we  did  not  actually  perturb  the  measure- 
ment  values.  We  simply  processed  the  statistics.  We  did  not  do 
a Monte  Carlo  type  of  problem  where  you  would  actually  put  the 
perturbations  on  in  accordance  with  those  statistics. 

Thomas: I feel  that  the  quality  of  your  results  in  regard  to  the 
aerosols  might  arise  from  the  fact  that  you  only  had  one  parameter 
in  the  size  distribution.  We  have  taken a look  at  the  possible 
inversion  of  all of the  matrix  elements,  using a three-parameter 
model,  and  we  found  three  orders  of  magnitude  separation  between 
the  first  and  second  eigenvalues. So limiting  the  model  to  one 
parameter  might  be  of  great  value  to  you. 

Malchow: Yes, I think  it  was. Two parameters  would  be  really 
tough,  and  more  parameters  than  that I cannot  really  see  being 
handled  easily. 

.. - . -" ~. ~ 

Editorial  Footnote: The  following  statement  was  submitted  by  the 
authors  soon  after  the  Workshop--"Some  of  the  questioners  of  our 
results  expressed  concern  that  we  had  not  produced  simulations 
that  included  random  noise  inputs.  Within  the  week  following  the 
meeting,  we  did  successfully  run  simulations  with  additive  random 
noise,  and  we  obtained  results  that  were  quite  satisfactory. To 
produce  these  results,  we  found  it  necessary  to  introduce a small 
amount  of  gain  damping." 
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INVERSION OF SOLAR AUREOLE MEASURFMENTS 

FOR DETERMINING AEROSOL 

CHARACTERISTICS 

Adarsh Deepak 
O l d  D o m i n i o n   U n i v e r s i t y  

and 
I n s t i t u t e  f o r  A tmospher i c   Op t i c s   and  

Remote   Sens ing  ( IFAORS)  

S o l a r   a u r e o l e  i s  the r e g i o n  of e n h a n c e d   s k y   b r i g h t n e s s  
w i t h i n   a b o u t  20° around the S u n ' s  d i sk ,  m a i n l y   b e c a u s e  o f  the 
p r e d o m i n a n t l y   f o r w a r d   s c a t t e r i n g  o f  a e r o s o l   p a r t i c l e s .  I t  i s  
shown t h a t  the s o l a r   a u r e o l e   r a d i a n c e  i s  very s e n s i t i v e l y  
dependen t  on the a e r o s o l  s i z e  d i s t r i b u t i o n s .  The p h o t o g r a p h i c  
s o l a r   a u r e o l e   i s o p h o t e  ( P S A I )  measurement   t echnique  f o r  deter- 
m i n i n g  the a e r o s o l  s i ze  d i s t r i b u t i o n  n ( r )  and other charac-  
teristics t a k e s   a d v a n t a g e  o f  this s e n s i t i v i t y .   S i n g l e   s c a t -  
t e r i n g   t h e o r y   o f  the s o l a r   a u r e o l e  i s  g i v e n .  The a s s u m p t i o n s  
and conditions imposed on the s i n g l e   s c a t t e r i n g  theory t o  
make i t  t r a c t a b l e  t o  inversion a r e   d i s c u s s e d .  The i m p o r t a n t  
role o f  the a lmucantar   measurements  i s  a l s o   d i s c u s s e d .  E f f o r t s  
t h a t  need t o  be per formed  i n  the n e a r   f u t u r e   a r e   a l s o   s t a t e d .  

I. INTRODUCTION 

A s  man makes  more and more of an  impact on h i s  environment 

because  of the  rapidly  expanding  technology, it becomes increasingly 

imperative  to  study  the background l eve l  of   these  aerosols   in  

order  to  monitor how  man is  affecting  the  balance  in  the  atmosphere 

and  what e f fec ts   these   aerosols  w i l l  have  on  such  things as c l i -  

mate, a i r  qua l i ty ,  solar radiation  dosage,  man's  health,  food  pro- 

duction, etc. 
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Remote sensing' techniques  based on ex t inc t ion  and sca t t e r ing  

of  electromagnetic  radiation by aerosols are perhaps  the  most  prac- 

t i ca l  and  economical way of diagnosing  and  monitoring  the atmo- 

spheric  aerosols on a long-term  basis. The aerosol c h a r a c t e r i s t i c s  

of special i n t e r e s t   a r e :   t h e   s i z e   d i s t r i b u t i o n   n ( r ) ,   t h e  complex 

re f rac t ive   index  6 = m '  - im",  and t h e   a l t i t u d e   d i s t r i b u t i o n   o f  

t hese   quan t i t i e s .  O f  these ,   the   s ize   d i s t r ibu t ion   perhaps   p lays  

the   mos t   impor tan t   ro le   in   e lec t romagnet ic   sca t te r ing  phenomena 

and  atmospheric  processes. I t  i s  assumed for   the   sake  of s i m -  

p l i c i t y   t h a t   t h e   a e r o s o l s   a r e   s p h e r i c a l ,  r being  the  radius .  

Nearly a l l  the  aerosol  remote  sensing  methods,  active  and 

passive,  are based  on  the  measurement  of  extinction,  scattered 

in t ens i ty ,  or polar iza t ion   of   the   d i rec t ,   backsca t te red ,   o r   mul t i -  

angle   sca t te red   rad ia t ion  made mult i -spectral ly   or   through  narrow 

bandpass   spec t ra l   f i l t e rs .  I t  is  by inverting  the  measurements 

obtained by one o r  a combination of these  methods tha t   t he   ae roso l  

c h a r a c t e r i s t i c s  are usually  determined.  In  this  paper,   simple and 

p r a c t i c a l  methods  based  on  the  measurement and imrersion  of  the 

solar   aureole   radiance  are   descr ibed.  

11. SOLAR  AUREOLE MEASUREMENTS 

The so lar   aureole  is  the  area  of  enhanced  brightness  closely 

surrounding  the  Sun's  disk  (within  about 20  ) because  of  mostly 

aerosol   scat ter ing  of   sunl ight .   Since  the  aerosols   scat ter   pre-  

dominantly  in  the  forward  direction,  the  contribution  of atmo- 

spheric   haze  to   the  sky  radiance  for   angles   c lose  to   the Sun is  

roughly l o 2  t o  lo3 times the  contr ibut ion by molecular   scat ter ing.  

This i s  i l l u s t r a t e d   i n   F i g .  1. It is to  t a k e  advantage of t h i s  

la rge   s igna l   range   tha t  a simple,   portable,   photographic  solar 

aureole measurement (PSAM) technique w a s  developed a t  the  

University of F lo r ida   i n  1970 (Ref. 1) and  has  since  been  used  to 

d iagnose   the   aerosol   s ize-a l t i tude   d i s t r ibu t ions   (Refs .  2 t o  5) by 

usingtheaureole  radiance  measurements  along  the  almucantar.  

0 
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The almucantar is a conical   scan  of   constant   solar   zeni th   angle  

with  the  local   zeni th   as   the  axis .  A so lar   aureole  measurement 

program was subsequen t ly   i n i t i a t ed   a t   t he  NASA Langley  Research  Center 

Center i n  1974  and the  photographic  solar  aureole  isophote (PSAI)  

method (Refs. 6 and 7) w a s  developed.  Isophotes are l i n e s   o r  

curves  of  equal  radiance. The PSAI  method is an  extension  of  the 

almucantar  solar  aureole  radiance (ASAR) method. I n   t h e   l a t t e r ,  

the  radiance measurements  taken  along  the  almucantar  are  used  to 

in fer   the   aerosol   p roper t ies .   In   the  PSAI method, i n  a d d i t i o n   t o  

making the  almucantar  measurements,  one  takes  advantage  of  the 

f a c t ,  which  emerged  from our  computer s tudies ,   that   the   shape  of  

the  solar   aureole   isophotes  is  sensit ively  dependent on the  charac- 

t e r i s t i c s  of   the  aerosol   s ize   dis t r ibut ion.   Suggest ions  for   the 

use  of  solar  aureole measurements to   determine  aerosol   propert ies  

had a l so  been made e a r l i e r  by Deirmendjian  (Refs. 8 and 9) and 

other  researchers  (Refs.  10  to  13).  Solar  aureole  measurements, 

taken  with  scanning  photometers  for  determining  aerosol  properties 
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F i g .  1. R e l a t i v e  intensities o f  the sky b r i g h t n e s s   a s  com- 

pared  to  t h a t  o f  the S u n ' s  direct l i g h t .  r r e p r e s e n t s  the 

d i s t a n c e   f r o m  the Sun i n  s o l a r   r a d i i .  (From R e f .  1 4 . )  
S 
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have a l s o  been made  by  Shaw (Ref.  15)  and W i t t y ,   e t   a l .  (Ref.   16).  

The following  sections  briefly  describe  the  theory,   photo- 

graphic  measurements,  and r e su l t s   o f   t he  PSAI method.  For d e t a i l s  

of some of t he   t heo re t i ca l . a spec t s   d i scussed   he re ,   s ee  Ref. 1. 

111. S I M P L I F Y I N G  ASSUMPTIONS 

The forward  scat tered  radiance?  being  highly  sensi t ive  to  

n ( r )  I is  r e l a t i v e l y   i n s e n s i t i v e   t o   e f f e c t s  due to   aerosol   re f rac-  

t ive   index ,   po lar iza t ion ,  and mul t ip l e   s ca t t e r ing  ( M S ) ,  a f a c t  

that   helps   in   s implifying  the  inversion  problem. I n  t h i s   pape r ,  

on ly   the   s ing le   sca t te r ing  (SS) theory  treatment is considered 

which  should  help i n  understanding  the  diff icul t ies   involved  in  

the  inversion  of  aerosol  scattering  measurements.  Therefore,  one 

makes the  following  reasonable  simplifying  assumptions: 

(1) P a r t i c l e s   a r e   s p h e r i c a l  so t h a t   r e s u l t s  of  the Mie 

theory  can  be  used i n  computations. 

( 2 )  The atmosphere i s  hor izonta l ly  homogeneous and v e r t i c a l l y  

inhomogeneous. 

( 3 )  Absorption  effect .s   are  ignored by s e l e c t i n g   t o  work i n  

spec t r a l   r eg ions   fo r  which atmospheric  absorption is n i l .  

(4)  The polar iza t ion   e f fec ts   a re   smal l   for   forward   sca t te red  

l i g h t  and  can  be  ignored. 

(5 )   Fo r   r e l a t ive ly   c l ea r   days   (v i s ib i l i t y  > 15 km) , the  MS 

e f fec t s   a t   t he   fo rward   s ca t t e r ing   ang le s   a r e   sma l l  compared with 

SS (Ref. 4) and can  be  ignored. 

.I 

(6) An average  value  for   the  refract ive  index  of   a l l  atmo- 

spher ic   aerosols  i s  assumed for forward  scatte-qing. 

(7)  The atmosphere is t rea ted   as   p lane-para l le l ;   the   spher -  

i c a l   E a r t h   e f f e c t s ,  which become s ign i f i can t   fo r   zen i th   ang le s  

I$ larger   than 75 , are   incorpora ted   in to   the   theory  by the  use  of 

the  generalized Chapman type  functions' S (I$) (Refs. 4 and 17)   in  

place of the  secant   funct ions.  

0 
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IV. SINGLE SCATTERING THEORY OF THE SOLAR AUREOLE 

Figure 2 i l l u s t r a t e s   t h e  geometry  of  the  calculation. Shown 

is an  acceptance  cone dR or ig ina t ing  a t  the  detector   and a s o l i d  

angle dR' centered a t  the  e lemental   scat ter ing volume dV a t  a l t i -  

tude y (h) - 4s and 4 are the  zeni th   angles  of t h e  Sun and 

the  narrow  view  cone  and w is  the  dihedral  angle  between  the 

normals t o   t h e  Sun zenith  and  view  cone  zenith  planes  intersecting 

a t  dV. The sca t t e r ing   ang le  j~ is  then  given by t h e   r e l a t i o n  

COS JI = COS 4 COS 4 - s i n  4 s i n  4 cos w 
S s (1) 

The element dv is given by 

dV = R2 dR S ( 4 )  dy (2 )  

where the  generalized Chapman type  functions ( R e f s .  4 and 1 7 )  

The opt ical   depth  def ined by 

(NORMAL 

Y 

Zenith Sun 

An 
su 

F i g .  2 .  The geome t ry  of the s k y   s i n g l e   s c a t t e r i n g   p r o b l e m .  
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for a ray  t ravers ing  the  dis tance  f rom  the Sun t o  t h e  air m a s s  

element dV is given by 

and  from the air  mass to  the   de tec tor  by 

where M denotes a i r  molecules; A, the   aerosol   spec ies ;  A ,  t h e  

wavelength;  and f3' the volume s c a t t e r i n g   c o e f f i c i e n t  (VSC) (km-l) 

a t  a l t i t u d e  y f o r   t h e   j t h   c o n s t i t u e n t .   I n   t h i s  paper, a l l  quan- 

t i t i e s   r e p r e s e n t e d  by B i ,  BA, F ~ I  FA, P i  , and P are funct ions 

of 6, even  though t h e i r  6 dependence is  not   indicated i n  t h e i r  

representa t ion  form. The primes denote  the  y-dependence  of  the 

quan t i t i e s .  BAand f3' are defined by the   fo l lowing   re la t ions :  

A 

M 

where Q(x, ft) i s  the   e f f i c i ency   f ac to r   (Re f .   18 ) ,  x = 2 m / A  i s  

the  particle s i z e  parameter, r1 and r2 are minimum and maximum 

values  of r z.nd 15 = m' ~ - i m " ,  the  complex refract ive  index  of  

aerosols .  

where the  VSC for  molecules i s  

B M 0 )  = 
8m3(n2 - 1) (4  + 3d) 

(8b) 
N A4 (4  - 3d) 

In  Eq .  8 ( b ) ,  N is the  number of molecules   n ,   the   refract ive 

index  of  the medium, d = 4A/(1 - A ) ;  and A i s  the  depolar izat ion 

o f   s c a t t e r e d   l i g h t   a t  a scat ter ing  angle   of  90 f o r  a l i n e a r l y  

polar ized   inc ident   rad ia t ion   wi th  i ts  electr ic   vectok  perpendicular  

to   the   sca t te r ing   p lane .   For   unpolar ized   inc ident   l igh t ,  A i s  

replaced by 5 = 2A/(1  + A ) .  Then the volume sca t te r ing   func t ion  

0 
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(VSF) for air molecules (j = MI is 

where  the  molecular  phase  function  is 

where p (y) is the  dimensionless  function  representing  the  alti- 

tude  distribution of molecular  density.  The VSF for  aerosols 

(j = A) is 

M 

FA($# X I  y) = B A ( X I  Y)P~($I A I  Y) 

where  the  aerosol  volume  phase  function  is 

and i and i are  the  Mie  intensity  functions  and k = 27r/A. 
1 2 

The  sky  radiance  due  to  the  molecules  and  aerosols  in  the 

volume  element  dV  is  then  given  by 

Integrating  over  all  such  elemental  volumes,  the  total  single 

scattered  sky  radiance  is 
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where 

Before   d i scuss ing   the   in~~ers ion   problem,  a br ief   descr ipt ion  of  

the  photographic  solar  aureole  measurement (PSAM) technique w i l l  

be i n  good order .  

V. THE PHOTOGRAPHIC SOLAR AUREOLE MEASUREMENT TECHNIQUE 

A photographic  technique of making  measurements  of t he   so l a r  

aureole  radiance i s  br ief ly   descr ibed  here .   Figure 3 schematically 

i l l u s t r a t e s   t h e  equipment.  Photographs of the   Sun 's   aureole   are  

taken  with  a  small  format  camera  (35 mm o r  70 mm) through  a wave- 

l e n g t h   f i l t e r   w i t h   t h e  Sun occul ted by a neut ra l   dens i ty  (ND) d i s c  

(ND = 4)  held coaxia l ly  on a  stem  about 0.6 m t o  1 .3  m ( 2  t o  

4 f t . )  i n  f r o n t  of t he   l ens .  The ND f i l t e r   a t t e n u a t e s   t h e   r a d i -  

ance   o f   the   d i rec t   sunl ight  by a f a c t o r  of l o 4 ,  so t h a t   t h e  

opt ical   densi ty   of   the   Sun 's  image is  of  the same magnitude a s  

the  opt ical   densi t ies   of   the   surrounding  aureole ,   as  shown i n  a 

typical  photograph i n  Fig.  4a. The Sun's image not  only  enables 

ND FILTER 

F i g .  3 .  S c h e m a t i c   i l l u s t r a t i o n  of the arrangement  of the 

s o l a r   o c c u l t i n g  disc and the camera f o r  a u r e o l e   p h o t o g r a p h y .  
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I 

F i g .   4 ( a ) .  A t y p i c a l   s o l a r   a u r e o l e  35 mm-photograph  taken 

t h r o u g h  a w a v e l e n g t h  f i l t e r  X = 500 nm. (b) . An i s o d e n s i t y  

t r a c i n g  o f  the pho tograph .  (c) . The   compu ted   so lar   i sopho te  

mapping o f  the pho tograph .  
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one t o   c a l i b r a t e   t h e   e n t i r e   p h o t o g r a p h   r e l a t i v e   t o  i ts  radiance,  

bu t   a l so   enables   accura te  measurements t o  be made of the  angular 

dis tances   f rom  the Sun. Photographs are taken  through  different  

wavelength filters. In  addi t ion,  the d i r e c t   s o l a r   i r r a d i a n c e  

measurements  through  the same fi l ters are made with a photometer 

to   determine T ( X ,  0) . 

A. Solar  Aureole  Isophotes 

The op t i ca l   dens i ty   o f  the whole photograph i s  read  with  the 

help  of a Joyce-Loebl  Isodensitracer  which  gives  digital  data  out- 

pu t  on a magnetic  tape  and a t  the same time provides   an  isodensi ty  

t racing,   such as shown i n  Fig..  4b. I s o d e n s i t i e s   a r e   l i n e s   o r  

curves   of   equal   opt ical   densi ty   in  a photograph.  Isophotes  are 

then  generated from the  taped  data   output ,  as shown in  Fig.   4c,  

where an economy-wise reduction  has  been made i n   t h e  number of 

da ta   po in ts .  

B. Almucantar  Radiance 

The photogrammetry  of  the  solar  aureole i s  presented   in  

another   paper   submit ted  for   publ icat ion,  where it i s  shown t h a t  

the  a lmucantar   projects  on the  f i lm  as  a conic   (Fig.   5) .  The 

shapes   o f   the   conics   for   th ree   d i f fe ren t   va lues  of t he   so l a r   zen i th  

angle $ are i l l u s t r a t e d   i n   F i g .  6. Accordingly,  the  measured 

almucantar  radiance as a funct ion  of   the  scat ter ing  angle  is  

shown i n   F i g .  7. The peak a t  Oo corresponds  to Sun! s d i r e c t  

l i gh t   r educed   i n   i n t ens i ty  by the ND disc. 

S 

V I .  THE INVERSION  OF SOLAR AUREOLE MEASURFMENTS 

In   o rde r   t o  make Eq. (14) simpler  and  amenable to   invers ion ,  

measurement  should be r e s t r i c t e d  to  zeni th   angles  4 o r  4 less 

than 75O. Then the  spherical   Earth  correction  can be neglected 

and 

7 
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ZENITH 
4, SUN RAYS 

F i g .  5 .  A l m u c a n t a r   p r o j e c t i o n  on the f i l m   a s  a conic. 

ALMUCANTAR PROJECTION ON FILM 

0 

15 

2 0  

25 

30 

I 1 

F i g .  6 .  The s h a p e s   o f  the conics for three s o l a r  zenith 

a n g l e s  @s = l o o ,  25O, and 45O, for a lens of f o c a l   l e n g t h  55 nun. 
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ANGLE Jr, Deg 

F i g .  7 .  P l o t  of the a l m u c a n t a r   r a d i a n c e   a s  a f u n c t i o n  o f  the 

s c a t t e r i n g   a n g l e  (sol id  l i n e ) .  Symbols i n d i c a t e   t h e o r e t i c a l l y  

compu ted   rad iance  for di f ferent  size d i s t r i b u t i o n s .  

Equations (14) and  (15)  reduce t o  

where 

G = H ( A )  sec $ e “ r ( A ,  0 ) sec  (p 
(18) 

0 

With Eq. ( 1 7 ) ,  it i s  possible   to   obtain  the  information  about  

t h e   s i z e   a l t i t u d e   d i s t r i b u t i o n  of a e r o s o l s   f r o s t h e   m u l t i s p e c t r a l  

measurements of (a) sky radiance B(A)  a s  a function  of (p $, and 

w and (b) the t o t a l   o p t i c a l   d e p t h  T ( A ,  0 )  . 
S I  

The a l t i tude   d i s t r ibu t ion   of   molecular   dens i ty  p M (y) can  be 

obtained from t a b l e s   o r  from  radiosonde  data. The funct ions 

FA ($, A I Y) and Ti(A, y )  I both of which  depend on t h e   a l t i t u d e  
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size  distribution  q(r,  y),  are  the unknowns in Eq. (16). 

Therefore,  in  order  to  make Eq. (16) tractable  to  inversion,  an 

assumption  has  to  be  invoked  about  the separability of  the 

altitude-size  distribution  function q (r,  y)  in  the  form 

where  the  dimensionless  quantity p (y)  is  defined  by A 

This  assumption  implies  that  the  form  of  the  particle  size 

distribution  n(r)  does  not  itself  change  with  altitude y, but  only 

the  number  density or concentration  varies.  This  is a reasonable 

assumption  in  view  of  Junge's  experimental  observations  that  up  to 

about 3 km, the  aerosol  size  distribution  n(r)  remains  nearly  con- 
stant.  Since  most  of  the  aerosols  are  concentrated  below 3 km, 
and  according  to  Elterman's  data,  the  aerosol  density  falls  off 

nearly  two  to  three  orders of magnitude  at  an  altitude  of  about 

5 km, the  error  introduced  due  to  extension  of  the  assumption of 

constancy  of  n(r)  to  regions  above 3 km is  small.  Then,  functions 

B i t  F ' and P' reduce  to A' A 

and 

where 

and 
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In  case two ae roso l   l aye r s   hav ing   d i f f e ren t   s i ze   d i s t r ibu t ions  are 

present   in   the  a tmosphere,  it i s  then  convenient  to  choose a two- 

term model for  rl (r, y) , such as 

which is  separable i n  r and y in   each  of i t s  terms. This case is 

not   discussed  here ,   but  w i l l  be t r e a t e d   i n  a subsequent paper. 

I n  Eq. (17) ,   both  the  molecular   and  aerosol   scat ter ing con- 

t r i b u t i o n s  depend on the unknown quant i ty  T (y ) .  L e t  us   def ine 

the  "effect ive  t ransmission ' '   funct ions  for  a i r  molecules  and 

aerosols as 

A 

and 

where the   in tegra ted   th ickness  i s  given by 

W . ( Y )  = f P .  (y ' )dy '  (j = M, A) (27)  
7 

0 

By using Eqs. (25)  and  (26) , Eq. (17)  can  be  written as 

The y-dependence  on the  r ight-hand  side  of Eq. (28) is now confined 

t o   t h e  two f a c t o r s ,  TM and T represent ing  effect ive  t ransmission 
A' 
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factors. It 

lows : 

can  easily  be  shown  that T is related  to T as fol- M A 

Granting  we  know  Ho(A), T ( A ,  0) can  be  determined  by  direct  radi- 

ance B of  the  half-degree  Sun  cone as given  by 
S 

-rM(A, 0) can  be  computed  from  radiosonde  data  for  the  observation 

site so that 

Many  techniques  for  obtaining  the  aerosol  characteristics  suggest 

themselves  in  the  light  of  this  analysis.  One  of  the  simplest  and 

the  most  elegant  is  the  method  based on the  almucantar  radiance 

measurements,  as  explained  in  the  following  section. 

VI1 . ALMUCANTAR AS AN INDICATOR OF n  (r) 

The  difficulty of obtaining  information  about  aerosol  charac- 

teristics  from Eq. (28) lies  in  that  the  dependence  of B on n(r) , 
15 and  TA(y)  is  not  separable.  One  simple  method  of  handling  this 

problem is to make  radiance  measurements  in  the  almucantar 

(9  = 9,) - 
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For c$ = c$s, TA = 7 = 1 so that Eq. (28)  reduces  to M 

B(@ = @ s ,  w ,  h )  = G{PM($,  X)TM(A, 0 )  + PA($, A )  TA(X, 0) (32) 

which  is  independent  of y. PA($, A) can  then  be  obtained  from 
almucantar  radiance  measurements  by  rewriting Eq. (32) as 

1 B(@ = @ s ,  - PM($, h ) T M ( X ,  0 )  
X) 

'A('' ') T A ( h ,  0 )  i G  
Figure 8 shows  a  plot  of  the  experimental  phase  function  curve 

normalized to unity  at  3 . 0 

In  the  following  is  described  an  algorithm  for  obtaining 

n(r)  from PA($ ,  X). If  we  assume  for I% an  average  value  of  say 

1.55 + i(O.O),  it  should  then  be  possible  to  obtain  n(r)  from 
Eq. (33)  by  either  a  numerical  inversion  scheme  or  a  model-fitting 

approach.  In  either  case,  theoretical  values  of PA($, X) obtained 
from Eq. (23c)  are  compared  with  experimental  values  of  PA($, A )  

I I I I I I I 
3 6 9. 12 15 18 21 

SCATTERING  ANGLE Jr , DEGREES 

F i g .  8 .  E x p e r i m e n t a l   p h a s e   f u n c t i o n   c u r v e   o b t a i n e d   f r o m  

a l m u c a n t a r   r a d i a n c e   c u r v e  shown i n  F i g .  7 .  Dashed  curve corre- 

sponds  to r igh t -hand  side of the Sun;  sol id  curve t o  the l e f t -  

hand side. 
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obtained  from Eq. ( 3 3 ) .  In   t he  la t ter  approach, a catalog  of  phase 

functions is generated by use  of   an  analyt ic  model f o r   n ( r ) ,   s u c h  

as 

where pl ,   p2,   p3,and v are adjustable   constants   and  the  eff ic iency 

f ac to r ,  Q = 2 ,  f o r   l a r g e  r. Typica l   s ize   d i s t r ibu t ion   curves  for 

different   values   of   the   parameter  v a r e  shown i n   F i g .  9. Any 

o t h e r   r e a l i s t i c   a n a l y t i c  model o f   n ( r )  w i l l  do j u s t  as w e l l .  

A se t   ofphase  funct ion  curves   corresponding t o  values  of V 

that   range from 4.0 t o  5 .2  are shown in  Fig.   10.  By comparing 

the  experimental   phase  function  curve  in  Fig.  8 with  one  of  the 

curves   in   the   ca ta log ,   one   ob ta ins  a reasonably good est imate   of  

t h e   n ( r ) .   I f ,  however,  one  wants t o  go a s t ep   fu r the r  and  obtain 

t h e   n ( r )   t h a t   g i v e s   t h e  best f i t   t o   t he   expe r imen ta l   phase   func t ion  

curve, a least squares  computer  code is  used.  But  the  cost  of 

such a computation is  of ten   p rohib i t ive ,   espec ia l ly  when Mie 

theory is  used,  encouraging  one  to stop shor t  and se t t le  f o r   t h e  

n(r)   obtained  with a v i sua l  fit t o  one  of  the computed curves  in  

the  catalog.  

V I 1 1  . SOLAR AUREOLE ISOPHOTES AS INDICATORS  OF n ( r )  and  pA(y) 

An extensive  parametric  computation  of  the  solar  aureole 

isophotes as funct ions  of   n(r)   and p (y)  and t o  some extent ,   of  

fi, has  been  carried  out by using Eqs. (28 )  and (34) and  the aerosol 

number d e n s i t y   p r o f i l e  N ( 0 ,  y) , such as the  one  obtained  from  l idar 

measurements  and shown i n   F i g .  11. Everything else being  the same, 

circumsolar  isophotes  corresponding to  three values   of   the  

parameter v of   the  size d i s t r ibu t ion   n ( r )   (F ig .  9) are shown i n  

A 
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RADIUS, pm . 

F i g .  9 .  T y p i c a l  s i z e  d i s t r i b u t i o n   c u r v e s   f o r   p a r a m e t e r  

v = 4.0, 4 .4 ,  and 5 .2 .  
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SCATTERING  ANGLE JI,  DEG 

< 
F i g .  10 .  A set of p h a s e   f u n c t i o n   c u r v e s   c o r r e s p o n d i n g  t o  

the s i z e  d i s t r i b u t i o n   c u r v e s  shown i n  F i g .  9 for v v a l u e s  i n  the 

range  4.0 t o  5.2. 
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AEROSOL NUMBER DENSITY, ~ r n - ~  -- 
F i g .  11. A l t i t u d e   d i s t r i b u t i o n  of p a r t i c l e  number d e n s i t y  - 

(cm 3, o b t a i n e d  from l i d a r   o b s e r v a t i o n s .  

Figs.  12a,  12b,  and  12c. It  is  easy  to  see  from  Figs. 9 and 12 

that  by  slightly  increasing  the  number of smaller  particles  and 

decreasing  the  number of larger  particles  as v becomes  larger, 
the  shape  of  the  isophotes  undergoes  a  dramatic  change. As the 

value of v increases  upwards  from  a  value of 4.0, the  isophote 

pattern  attains  a  shape  increasingly  similar  to  that  of  the 

experimentally  obtained  isophotes  (Fig.  4c),Until  for  a  value of 

v = 5.0 the  computer  generated  pattern  (Fig.  12c)  best  resembles 

the  latter.  Thus,  Fig. 12. illustrates  the  fine  sensitivity  of  the 

patterns of the  circumsolar  isophotes to the  size  distribution 
n(r). In  contrast,  in  the  case of the  lidar  backscattering  ratio 

profile,  defined  by 

FAhr, X I  Y )  

Fh(T, A I  Y) 
R A ( ~ ,  X, Y) = 1 + (35) 
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F i g .  

d i f f e ren t  
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12. Computer   generated  SS c i r c u m s o l a r   i s o p h o  

v a l u e s  of the s i z e  d i s t r i b u t i o n   p a r a m e t e r  V: 

4 ,  and (c) v = 5.0. 

t e s  for 

( a )  v = 4 . 0 ,  



The changes i n  R corresponding  to   the  changes  in   the.value of v 

from 4.0 t o  5.2 occur in   the   peak   va lues   o f  R a t  16.5 Ian and 

22.5 km (Fig. 13) which is  a feature n o t   t o o   s e n s i t i v e   t o   n ( r )  

s ince   these   d i f fe rences   can   be   eas i ly  removed  by ad jus t ing   the  

sca l ing  parameter i n  n ( r )  . 
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B A C K S C A T T E R I N G   R A T I O  

F i g .  13. L i d a r   p r o f i l e s  of the b a c k s c a t t e r i n g   r a t i o  for 

v = 4 . 0 ,  v = 4 . 6 ,  and v = 5.2 showing t w o  l a y e r s  of volcanic d u s t  

w i t h   p e a k   c o n c e n t r a t i o n s   a t   a l t i t u d e s  of 16.5 km and 22.5 km over 

H a m p t o n ,   V i r g i n i a .  

- 

A t t e m p t s  a r e  underway to   opt imize computer  programs t h a t  w i l l  

ob ta in   the  best f i t  to  the  isophote   pat tern  or   numerical ly   invert  

the  isophote data by u t i l i z ing ,   t o   t he i r   advan tage ,   t he   f ac t   t ha t  

radiance  along  each  isophote  remains  constant.   In  this  regard,  

it is important to  keep i n  mind t h a t  even  though  isophotes  depend 

on  both  n(r)  and p,(y) , within  the  aureole  region  the  isophote 

shape is more sensi t ively  dependent   on  n(r)   than  on p (y ) .  The 

sens i t i v i ty   o f   t he   i sopho tes  t o  p (y)   increases   for   larger   angular  
A 

distances  from  the Sun. 
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IX. NUMERICAL INKERSION METHODS 

Whereas in  the  modeling  approach  one  starts  with a  model 

j ud ic i a l ly   guessed   a t  by experience,   in  the  numerical   inversion 

approach  one s t a r t s   w i t h   a n   i n i t i a l   e s t i m a t e  of parameters. A 

t y p i c a l   i t e r a t i v e  scheme,  such a s   t h e  one described by  Malchow 

and Whitney ( R e f .  19)  , i s  i l l u s t r a t e d  i n  Fig.  1 4 .  

Radiance o r  
Phase  Function- 

Measurements w i t h  Discrepancy 

of  Simulation 
Parameter 

Parameter 
Update 

Algorithm 

New 
1 > 'Estimate of 

Parameters 

Fig. 14. Schematic  representation of iterative  inversion of 

measurements. 

Simulations of the sky radiance  isophote  shape  or  the  phase  func- 

t i on   a r e  performed by using  the  radiative  transfer  equation  (such 

a s  Eq. (28)  for SS) o r  Eq. ( 2 3 ~ ) ~  respectively,   along  with  the 

i n i t i a l   s e t  of  parameters. Comparisons a r e  made with  the  appro- 

p r i a t e  measurements. If  the  discrepancy i s  greater   than a minimum 

prescribed  value,   then a  parameter  updating  algorithm is  used t o  

obtain a new estimate of parameters. However, when the  convergence 

c r i t e r i a  i s  sa t i s f i ed ,   t he   f i na l   e s t ima tes  of parameter  are assumed 

t o  be accurate .  < 

I n  such  an i t e r a t i v e  scheme, the   s imula t ion   re la t ion   (e .g . ,  

the   rad ia t ive   t ransfer  Eq. (28) ) i s   ca l led   severa l   t imes   dur ing  
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each  iteration.  And  here  lies  the  problem,  namely,  the  prohibitive 

costs  of  computation.  One  way  to  handle  the  problem  is  to  use 

simple  approximations  for P and BA in terms  of  the  parameters  in 
n(r), iii, and a(0, y). Exact  Mie  theory  computations of scattered 

radiance  when  used  in  an  inversion  scheme  were  found  to  be  pro- 

hibitively  expensive.  Thus,  it  is imperative that  in  developing 

a  radiative  transfer  code  with  the  aim  of  using  it  in  an  inversion 

scheme,  it  must  be  as computationally  fast as  possible  in  order 

to  be  of  practical  use  in  numerical  retrievals  of  aerosol  charac- 

teristics.  Work  is  in  progress  on  the  development  and  opti- 

mization  of  such  inversion  schemes  and  radiative  transfer  programs 

based  on  the  exact  Mie  theory  results. 

A 

X. CONCLUDING =MARKS 
Under  the  present  state  of  the  art  in  inverting  sky  scat- 

tered  radiance,  it  seems  that  for  the  present  the  modeling  approach 

applied to the  solar  aureole  measurements  gives  reasonably  good 

estimates  about  the  aerosol  characteristics,  particularly  about . 
the  size  distribution  n(r).  In  addition,  such a parametric 

modeling  approach  provides  not  only  a  clear  physical  insight  into 

the  problem,  but  also  understanding  of  the  sensitivity  of  the 

individual  aerosol  parameters  that  are  sought.  On  the  other  hand, 

catalog  or  modeling  methods  can  become  very  unwieldy  when  more 

than  one  aerosol  parameter  is  sought.  It  is  precisely  in  such 

cases  that  when  several  parameters  are  simultaneously  sought,  the 

numerical  inversion  schemes  have  an  added  advantage  over  the 

modeling  approach. 

In  spite  of  the  tremendous  upsurge  in  research  activity  in 

this  field  in  recent  years,  much  of  our  present  knowledge  of 

aerosol  characteristics  is  either  on  a  localized  scale  or  is 

spatially  and/or  temporally  averaged. To acquire  a  large  scale 

or  global  view of aerosol  characteristics,  their  monitoring  must 
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be ca r r i ed  from  aboard  space  platforms.  Greater  endeavor  needs 

t o  be made i n  the  area  of  aerosol  remote  sensing  techniques  and, 

p a r t i c u l a r l y ,  on the  inversion  aspects  of the  problem. 
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SYMBOLS 

sky  radiance 

d i r ec t   so l a r   r ad iance  

almucantar  radiance 

= 4A/(1 - A )  , i n  Eq. (8b) 

= sec (I - sec (I 
S 

= s .  ( ( Is)  - S j ( ( I ) ,  i n  Eq. (15) 
7 

volume sca t te r ing   func t ions .  Prime denotes  y- 

dependence 

factor   def ined i n  Eq. (18) 

unat tenuated  solar   i r radiance 

Mie intensi ty   funct ions 
i n t e n s i t y  of solar  disk  normalized  to  unity a t  i t s  

center  

= M for  molecules and = A €or   aerosols  

= 2 T / h  

complex re f rac t ive   index  of aerosols ;  iii = m '  - i m "  

r e a l   p a r t   o f  5 
imaginary p a r t   o f  5 
d i f f e r e n t i a l   s i z e   d i s t r i b u t i o n ,  cm um 

molecular  refractive  index 

number dens i ty   o f   ae roso l s   a t  y(km), cm-3 

number density  of  molecules, 

adjustable   constants  i n  Eq. (34) 

phase  functions.  Prime denotes  y-dependence 

e f f ic iency   fac tor  

rad ius ,  um 

so lar   rad ius  

dis tance  of   scat ter ing volume to   t he   de t ec to r  

-3 -1 
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3, 38 

%- 

l i da r   backsca t t e r ing   r a t io  

"effective  transmission"  function,  defined i n  Eqs.  

(25)  and (26) 

s c a t t e r i n g  volume of  atmosphere 

in tegra ted   th ickness ,   def ined   in  Eq. (27) 

distance  along  X-direction  on  photograph 

a l t i t u d e ,  km 

distance  a long  y-direct ion on photograph 

volume ex t inc t ion   coe f f i c i en t s  for t h e   j t h  con- 

s t i t u e n t .  Prime  denotes y-dependence 

two-dimensional  function  of L and y 
wavelength 

d imens ionless   fac tor   represent ing   the   a l t i tude  

dependence of j t h   c o n s t i t u e n t .  

t o t a l   o p t i c a l   d e p t h   f o r  a l l  cons t i tuents  

op t ica l   depth  for  t h e   j t h   c o n s t i t u e n t  

op t ica l   depths  from top  of  atmosphere t o  V and 

V to  detector ,   respect ively 

ad jus t ab le   cons t an t   i n  Eq.  (34) 

zenith  angles  of  the Sun and  detector view  cone, 

respec t ive ly  

sca t te r ing   angle  

dihedral   angle  between the  normals   to   the Sun zeni th  

'and view  cone  zenith  planes  intersecting a t  the  

s c a t t e r i n g  volume 

solid  angles  of  cones  centered a t  t he   de t ec to r  and 

the   s ca t t e r ing  volume 
half-degree Sun cone 
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DISCUSSION 

Fymat: You have  mentioned t h a t  you are us ing   the  solar aureole ,  
bu t  it,seems t o  m e  t h a t  you are also using  lidar  and  multi-wave- 
length   ex t inc t ion .  I am, therefore ,  a l i t t l e  b i t  los t  on  what 
measurements you are employing  and  what  parameters you are 
attempting t o  recover.  

Deepak: Normally, you use a radiometer t o  perfarm  an  extinction 
measurement  of t h e   d i r e c t  solar rad ia t ion .  What I am suggesting 
is  t h a t   t h e   e x t i n c t i o n   d a t a  are n o t   s u f f i c i e n t  t o  o b t a i n   t h e   s i z e  
d i s t r ibu t ion   accu ra t e ly .   Bu t ,   i f   i n   add i t ion   one   has  measurements 
of the   angular   d i s t r ibu t ion  of scat tered  radiance,   one  gets  a much 
be t te r   idea   o f   the   s ize   d i s t r ibu t ion .   That  i s  one  point.  
Monostatic  lidar  measurements,  on  the  other  hand,  give you a good 
ver t ica l   reso lu t ion   of   aerosol   backsca t te r ing   coef f ic ien t  from 
which  information  about   the  a l t i tude  dis t r ibut ion  of   aerosol  con- 
centration  can  be  obtained.  What.1  have shown i s  t h a t  whereas 
the   l i da r   backsca t t e r ing  ra t io  data  one can f i t  with  any of t h e  
s ize   dis t r ibut ions?  obtained  with v = 4.0 t o  5 . 2 ,  the   so la r   aureole  
isophote  data  one  could f i t  wi th   only  one  of   those  s ize   dis t r i -  
butions.  Only  one  of them reproduced a l l  these  isophote  curves 
including  the bumps seen  in   the  curves .  

Fymat: I have two very  br ief   quest ions.  Are you doing a l l  the  
work assuming the  Junge  dis t r ibut ion? And, are you f i t t i n g   f o r  
one  Junge  parameter? 

Deepak: L e t  m e  show the   S i ze   d i s t r ibu t ion   func t ion   t ha t  I used, 
but   did  not   have  the time t o  show ear1ier.l It  i s  a funct ion  with 
four   constants  and those  curves of sLze d i s t r i b u t i o n  and  isophotes 
t h a t  you s a w  were obtained from t h i s   f u n c t i o n  by varying  the 
parameter v. For   l a rge   par t ic les ,   the   s ize   d i s t r ibu t ion   behaves  as 
a Junge   d i s t r ibu t ion .  We have  one scaling  parameter and th ree  
adjustable   constants   here .  The aim is to   obca in   t he  set  of 
parameters  which  gives  the  best  f i t   t o   t h e   e x p e r i m e n t a l   v a l u e s   o f  
the  mult ispectral   phase  funct ion,   the   isophotes ,   the   ext inct ion 
coe f f i c i en t ,  as w e l l  as t h e   l i d a r   b a c k s c a t t e r i n g   r a t i o .  So one 
t r i e s  t o  b e s t   f i t  as many different  measurements-obtained by 
d i f f e r e n t  methods  by ad jus t ing   t he   pa rame te r s   i n   o rde r   t o   ge t  a t  
the  so-cal led  "unique"  s ize   dis t r ibut ion.  

(In  response to Dr. Deirmendjian's show of hand): Well, I must a l s o  
mention that  Professor  Deirmendjian  suggested a similar apprpach t o  
aureole  measurements a long  t ime  ago  and  tr ied  to show the  same 
thing.  

L See Eq. ( 34) i n   t e x t .  
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Deirmendjian: Well, I have  no comment then!  In  1956,  that  is  
what I wanted t o  show and I did  take  Junge-type  dis t r ibut ion  with 
d i f f e ren t   s lopes  and I demonstrated  that   the  aureole would change. 

Irvine: You assumed an  index  of  refraction? 

Deepak: Yes, I did .  

Irvine: I n  some problems tha t   could  make a b ig   d i f fe rence ,   bu t  
I guess  here,   since you are mostly  concerned  with  the  diffraction 
pe.ak, it may not  be so sens i t ive .  

Deepak: Yes, t h a t  is indeed  another  advantage  of  the  forward 
s c a t t e r i n g ,   t h a t  it i s  not  as s e n s i t i v e   t o   t h a t   e f f e c t .  However, 
it does  have some s e n s i t i v i t y .  I have  done a parametric  study 
with  about  15  different  indices  of  refraction--varying  the  values 
of  both  the real part  as w e l l  as the  imaginary part .  Only  one 
index  of  refraction,  with a value  of  1.55-i(0),  gave a good f i t  
t o  the   da ta .  When I used a small va luefor the   imaginary  par t ,  
the  curves   tended  to   f la t ten  out .  So, t he re  is t h a t  small ba l l -  
park  of error in   the  index  of   refract ion  value,   depending on the  
coarseness  of  grid of values  chosen. 

Irvine: I t  might  have  been  useful  to  have some chemists a t  the  
conference who consider   these sorts of  inversion  problems  using 
l abora to ry   da t a ;   t ha t  i s ,  deducing  hydrosol  properties  from scat- 
t e r e d   i n t e n s i t i e s  and  polar izat ions.  You a l s o  assume s ing le  
sca t te r ing?  

Deepak: A s  a f i r s t  approximation,  yes.  That i s  why t h i s  method 
is  v a l i d   f o r   r e l a t i v e l y  clear days.  But I think  perhaps  Jerry 
Twitty  and  definitely D r .  Green  have  done some work with  mult iple  
sca t te r ing   in   the   so la r   aureole .  D r .  Green might  elucidate 
fu r the r  upon t h i s   p o i n t   i n   h i s   t a l k   l a t e r .  

Irvine: I t  would be r e l a t ive ly   ea sy   t o   t ake   t hese  models you 
deduce  and see how  much second-order   scat ter ing  there  i s  t o   s e e  how 
good an  approximation  s ingle   scat ter ing  is?  

Deepak: Y e s ,  I did  some ca l cu la t ions  on t h a t .  Second order  con- 
t r i b u t i o n  w a s  no t   t ha t  much. It wak  within 5 t o  6%  of  the  single 
sca t te r ing   cont r ibu t ion .  

Twitty: With regard t o  mul t ip l e   s ca t t e r ing ,   t ha t  i s  obviously a 
function  of how  much aerosol  i s  ac tua l ly   in   the   a tmosphere .  So 
to   e s t ima te  it you have  got  to  say  something  about  your  optical  
depth. What Adarsh  has  done is  essent ia l ly   independent   o f .   tha t  
because  he  has assumed s ing le   s ca t t e r ing .  So up t o  whatever  point 
mul t ip le   sca t te r ing  becomes impor tan t ,h i s   resu l t s  hold. 
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Deepak: U p  t o  about   opt ical   depths  of 0.5 or so, t h e  method i s  
good. 

Twitty: Now i n   t h e  work I d i d   f o r  my doctora l   thes i s ,   rad iance  
measurements  along  the solar almucantar   in   the same geometry t h a t  
Adarsh showed, I did  not  actually  include  any multiple sca t t e r ing  
but  it can be shown t o  what e x t e n t   t h a t  w a s  impor tan t   for   the  
s p e c i f i c   d a t a   t h a t  I used i n   t h e   a n a l y s i s ,  which had q u i t e  l o w  
opt ical   depths ,   about   0 .1   for   the  aerosol  part .  

Herman: 0.01 or 0.1? 

Twitty: 0.1. 

Herman: What d id  you f ind   €o r   r e su l t s   on 'mul t ip l e   s ca t t e r ing?  

Twitty: I used  our  data from about 3 to   about  2 5  , which i s  very 
similar t o  what  Adarsh  shows,  and the   mu l t ip l e   s ca t t e r ing  is  about 
5%  of  the  radiance a t  25  . So, i th ink  it is  similar t o   o t h e r  
people ' s   resu l t s ,   inc luding   yours .  

0 0 

0 

P. R u s s e l l :  I wonder abou t   t he   s eps i t i v i ty   o f   t h i s  method t o   t h e  
s t r a tosphe r i c   ae roso l .   I n   pa r t i cu la r ,  what  happens t o  your sim- 
ula ted   i sophotes   i f  you ju s t   e l imina te   t he   s t r a tosphe r i c   ae roso l  
from the  s imulat ion? 

Deepak: I have  done a number of  numerical  parametric  studies  on 
tha t ,   bu t   d id   no t  have  time t o  show t h e   r e s u l t s .  W e  added aerosol  
l a y e r s ,   f i r s t  two and then   th ree   l ayers ,  and moved them up and 
down i n   a l t i t u d e .  The s h i f t   i n   t h e   i s o p h o t e   p a t t e r n  w a s  seen a t  
about 15O away from.the Sun. In the   near   forward  direct ion,  no 
not iceable   sh i f t   in   the   shape   of   the   i sophotes  w a s  detected.  But 
fo r   l a rge r   ang le s   t he re  w a s  d e f i n i t e l y  a s h i f t .  One could show 
that   int roduct ion  of   upper   aerosol   layers   does  affect   the   shape 
of isophotes a t  larger   angular   Zis tances  from the  Sun. The iso- 
phote  curves changed a l i t t l e  b i t  a t  angles  beyond 1 0  o r  so, 
even  though  the  aerosol  layer  introduced  into  the model w a s  op t i -  
ca l ly   ve ry   t h in .  

0 

P. R u s s e l l :  Does t h a t  mean then   t ha t   t he   s i ze   d i s t r ibu t ion  param- 
e t e r   t h a t  you e x t r a c t  from t h i s  method is  s o r t , o f  a mean parameter 
for   the   t ropospher ic  and s t ra tospher ic   aerosols?  

Deepak: Exactly, a l l  r e s u l t s  are averaged  over  the  entire atmos- 
phere--for  example, we obtain  average  refractive  index and average 
s ize   dis t r ibut ion--because we are  using  the  assumption of  separa- 
b i l i t y  o f   t he   a l t i t ude   s i ze   d i s t r ibu t ion   he re .  < 

P. R u s s e l l :  Would t h e   f a c t   t h a t   t h e   s t r a t o s p h e r i c   a e r o s o l s  seem 
t o  have t h e i r   e f f e c t s   i n  a different   angular   region  help you t o  
separa te   the   s t ra tospher ic  and tropospheric? 
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Deepak: Well, one  of  the ways  you can do t h i s  is t o  go  up i n  a 
plane and take  aureole  photographs,  but it is very  expensive. 
And t h a t  is one  of   the  reasons  for   t rying t o  improve the  tech-  
niques  of  the  inversion  of  this  ground-based  data so t h a t   s t r a t o -  
spheric   aerosol   effects   can  be  separated.   For   this   purpose,  work 
is  in   p rogress  on optimizing a few d i f f e ren t   i nve r s ion  schemes. 
I hope t o  use some of  the  techniques  that  have  been  developed  by 
Harvey Malchow and  Cindy  Whitney. The r e s u l t s  are no t   qu i t e  com- 
plete yet .  

P. Russell: It looks  very  impressive,  very low cos t .  

v a n  de Hulst: On t h e  matter of  the  influence of mult iple  scat- 
t e r ing ,  it is p o s s i b l e   t o  make a very  easy  rough estimate of when 
it becomes important .   I f  I stand  looking a t  t he  Sun, t he re  is a 
drop  of a f ac to r  of 1000 from t h e   s o l a r   d i s k  t o  where the   aureole  
starts. I f  I integrate   over  a solid  angle  of  say 10  times t h e  
rad ius  of the Sun,  which is  a solid  angle  of  100 times t h e  Sun, 
then   the   in tegra ted   rad ia t ion  coming  from the   aureole  i s  still a 
f ac to r  10  below tha t   o f   t he  Sun. That means tha t   mu l t ip l e   s ca t -  
t e r i n g  must  be somewhere in   t he   o rde r  of 10%. And t h i s   h o l d s   f o r  
me standing on the  ground.  Another  factor  of two i s  l o s t   f o r   t h e  
average   aerosol   par t ic le   in   the   l ayer  somewhere up’ i n   t h e  atmos- 
phere. By t h i s  estimate i n   t h e  normal c l e a r  a i r  s i t u a t i o n ,   t h e  
mul t ip le   sca t te r ing  is rarely  important  beyond some 5%. 

Reagan: It w a s  not  clear  whether you were t r y i n g   t o   r a t i o n a l i z e  
and obtain  agreement  between  the  aureole data and the   ex t inc t ion  
and the   l i da r   backsca t t e r  measurements. I might  add,  amplifying 
on the   index   o€”re€rac t ion   aspec t ,   tha t   the   re la t ionship  between 
the   ex t inc t ion   coef f ic ien t  and the  backscat ter   coeff ic ient   does 
indeed  change r a the r  markedly as you change e i t h e r   t h e   r e a l   o r  
imaginary  component. I f  you are   t ry ing   s imul taneous ly   to  make 
those  agree  with  the  aureole data,  you  would indeed  have had some 
sens i t i v i ty   t o   i ndex .  Did you go back and  check  on t h i s  and 
i t e r a t e   i n   t h a t   s e n s e ?  

Deepak: The  same computer  code ca l cu la t ed   a l l   t he   t h ings  I have 
shown. I ran  the  programs  for   dif ferentm‘and m“ values .  The 
shapes   o f   the , l idar   backsca t te r ing   ra t io   curves  came ou t  t o  be 
nearly  identical   except  for  the  differences  in  magnitude a t  peaks 
of  aerosol  concentration, which differences  could  be removed by 
ad jus t ing   the   sca l ing  parameter i n   n ( r ) .  From t h i s ,  I could  not 
c l ea r ly   d i s t i ngu i sh  between the   va r ious   s i ze   d i s t r ibu t ions   fo r   t he  
same refract ive  index.  However, I: f e e l   t h a t   f u r t h e r  work needs t o  
be  done on t h i s   a s p e c t .  
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ANALYTIC  MODEL  APPROACH TO'THE INVERSION 

OF SCATTERING  DATA 

Alex  E. S. Green  and  Kenneth F. Klenk 
U n i  versi t y o f  F1 o r i d a  

W e  a p p l y   a n   a n a l y t i c   m o d e l   a p p r o a c h  which h a s  been 
deve loped  i n  n u c l e a r   s t u d i e s  t o  s e v e r a l   s i m p l e   a t m o s p h e r i c  
inversion problems .  We i l l u s t r a t e   b y   p a s t  work on the 
s o l a r   a u r e o l e   t h a t  th is  m e t h o d   g i v e s  a s h a r p   d e t e r m i n a t i o n  
o f  a e r o s o l  s i ze  d i s t r i b u t i o n   p a r a m e t e r s .  W e  show t h a t  this 
a n a l y t i c   a p p r o a c h ,   t o g e t h e r  w i t h  ground level p o i n t   s a m p l i n g  
da ta   measuremen t s ,  may be used t o  in fer  i n f o r m a t i o n  on the 
t r o p o s p h e r i c   o z o n e   p r o f i l e .  

I. ATMOSPHERIC  AND  NUCLEAR  OPTICS 

Many  of  us  who  are  now  involved  in  atmospheric  inversion 

problems  were  previously  involved  in  analogous  problems  in  other 

disciplines.  As  is  natural,  we  try  to  bring  to  bear  the  experience, 

sense  ofaesthetics,  or  prejudices,  if  you  will,  which  we  have 

acquired  in  these  other  fields.  The  beauty  of  this  conference  as 

it'  is  developing  following  some  of  the  earlier  papers  is  the  sense 

of  open-mindedness  which  has  emerged.  It  is  as  if  this  conference 

has  said,  "Let  a  thousand  flowers  blossom." 

In  my own (Green)  case,  my  main  prior  involvement  with  inver- 

sion  problems  has  been  in  connection  with  two  nuclear  physics  endeav- 

ors  based  largely  upon  scattering  data--(l)  inferring  the  nature  of 

the  fundamental  interaction  between  neutrons  and  protons,  and 

(2) inferring  the  detailed  nature  of  the  nuclear  potential  mani- 

fest  in  the  shell  and  optical  models  of  the  nucleus.  Let  me  use 

297 



the  first  problem  as  an  illustration  of  how.understanding is 

advanced  in  scattering  inversion  problems. 

When  the  neutron  was  discovered  in 1932, the  fundamental  prob- 

lem in  nuclear  physics  became  that  of  inferring  the  basic  force 

between  neutrons  and  protons.  The.approach  followed  has  been  to 

perform  scattering  experiments,  i.e.,  fire  neutrons or protons  on 

hydrogen  targets,  and  examine  the  emerging  angular  distributions 

(phase  functions)  and  polarizations at various  energies  (wave- 

lengths)  of  the  outgoing  particles.  The  hope  was  to  be  able  to 

test  various  proposed  two-body  potentials  which  when  inserted  into 

the  Schrijdinger  equation  or  Dirac  equation  might  account  for  these 

data  within  statistical  error.  This  was  the  main  line  of  approach 

in  nuclear  physics  until  the early1960s  when  the  only  phenomeno- 

logical  models  which  could  fit  the 0 to 400 MeV  array  of  scattering 

data  and  auxiliary  data  such  as theproperties  of the  bound  two- 

body  system  (the  deuteron)  were  exceedingly  complex,  requiring 

as many  as 40 adjustable  parameters  in  their  description. 

A breakthrough  came  in  the  mid-1960s  when  the  discovery Of the 

w ,  p and T-I mesons  by  particle  physicists  led  to  the  revival  of 

meson  theory  of  nuclear  forces  initiated  by  Yukawa  in  1935.  With 

the  additional  physical  constraints  of  meson  theory,  it  suddenly 

became  possible  to  fit  the  scattering  data  with  one  boson  exchange 

model  requiring  only  five  to  ten  adjustable  parameters,  rather 

than  the 40 parameters  of  purely  phenomenological  models.  Although 

the  final  story  is  not  yet  told,  the  nuclear  physics  community, 

since  1967  (Refs. 1 and 2), has  felt  a  great  aesthetic  sense  of 

relief  that  the  fundamental  law  of  nuclear  physics is not  as  mon- 

strous  as  it  had  appeared  to  be  in  the  early  sixties. 

Thus,  as  some  of  the  earlier  speakers  have  already  suggested, 

it  is  the  additional  physics,  physical  judgment,and  physical  infor- 

mation  which  one  brings  to  bear  with  the  scattering  data  which  will 

often  determine  the  success  and  utility  of  an  inversion  scheme. 
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Studies  leading  to  the  nuclear  shell  and  optical  models 

(Ref. 3) are  even  more  analogous  to  the  atmospheric  inversion  prob- 

lem.  For  over 40 years,  experiments  have  been  performed  in  which 

 various nuclear  particles  accelerated  from 1 MeV  to 100 GeV  energy 

range  are  scattered  from  various  nuclear  targets.  Many  lead  to 

optical-type  angular  distributions  (phase  functions),  polarizations, 

scattering,and  absorption  cross  sections.  Many  of  these  data 

patterns  can  be  accounted  for  by  assuming  a  complex  energy  depen- 

dent  nuclear  potential  (complex  wavelength  dependent  index  of 

refraction).  Even  the  terminology  of  this  subject,  such  as  "the 

cloudy  crystal  ball  model,"  reflects  the  light  scattering  analogy. 

Now  nuclear  opticians,  like  atmospheric  opticians,  divide  up  into 

a  school  concerned  with  average  gross  properties  and  a  school  con- 

cerned  with  statistical  fluctuations.  Both  groups  have  greatly 

enriched  the  subject,  although,  as  in  the  light  scattering  case, 

the  communications  between  the  schools  has  not  always  been  the 

best. 

My own specialized  pursuits  of  atmospheric  optics  (apart 

from  a  stint  in  World  War 11) began  in  1959  just  after  an  intenkive 

involvement  with  nuclear  optics  (Ref. 4). In  these  pursuits,  I 

have  mostly  used  the  gross  structure-nuclear  optical  modelers 

approach.  The  style  here  has  been  to  use  analytic  models  whose 

parameters  are  determined  by  nonlinear  least  square  adjustment  to 

experimental  data.  Then  we  look  at  the  systematics  of  the  param- 

eters  with  the  .ultimate  objective  of  relating  them  to  more  funda- 

mental  physical  parameters,  e.g.,  those  in  the  basic  nuclear  force. 

I would  like  now  to  illustrate  this  nuclear  optical  approach  with 

a  few  simple-minded  attacks  on  some  atmospheric  optics  problems. 

11. AUREOLE STUDIES 

Deirmendjian  and  Sekera  (Refs. 5 and 6) very  early  recognized 

the  importance  of  Mie  particles  in  the  theory  of  the  solar  aureole. 

Their  work  was  motivated  by  an  attempt  to  account  for  some  reported 
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anomalously  high  transmission  of  the  ultraviolet  part  of  direct 

sunlight.  It  is  interesting  to  note  that  D. S. Saxon,  who  col- 

laborated  with  Deirmendjian  and  Sekera  on  scattering  from  dielectric 

spheres  (Ref. 7) during  the  same  time  frame,  played  an  important 

role  in  the  development of the  nuclear  optical  model. 

Our  work, on determining  aerosol  size  distributions  from  solar 

aureole  intensities,  has  used a type  of  atmospheric  modeling  and 

single  scattering  theory  which  we  first  used  in a satellite  ozone 

sounding  analysis  (Ref. 8). That  the  skylight  in  the  neighborhood 

of  the  sun  can  be  used  to  good  advantage  may  be  surmised  from  the 

optical  theorem of nuclear  and  atomic  scattering  theory  and 

bistatic  radar  analysis  (Ref. 9). These  works  indicate  that 

whereas  backscatter  cross  sections (180 scatter)  vary  in a 

complex  manner  with  particle  shape  and  index  of  refraction,  for- 

ward  scatter  cross  sections  are  primarily  determined  by  the  volume 

of  the  particle.  This  property  was  first  utilized  in  the  doctoral 

theses  of  Adarsh  Deepak  (Ref. 10) and  Barton J. Lipofsky  (Ref. 11) 

which,  among  other  things,  involved  photographic  and  photoelectric 

studies of  the  solar  aureole  in  the  visible  region  (Ref. 12). More 

recently,  these  studies  have  been  extended  into  the  ultraviolet 

(Refs. 13 and 14). 

0 

Dr.  Deepak  has  already  described  some  of  the  features  of  this 

work  in  his  talk  on  the  Aureole  Isophote  Method  and  in  connection 

with  his  Stratospheric  Aerosol  Photographic  Experiment  (SAPE) 

proposal.  Let  me  add  some  words  here ori the  advantages  of  this 

type  of  experiment. 

In  Fig. 1, we  show  the  densitometric  traces  of a measured 

photographic  aureole  made  with  the  obscuring  disc  technique.  The 

traces  labeled r and 1 are  through  the  solar  almucantar  whereas 

the  traces  labeled b and t are  below  and  above  the  sun  in  the  solar 

meridian.  The  beauty  of  this  experiment  is  the  reference  intensity 

provided  by  the  solar  disc, so in  essence  we  have  on  our  measuring 

medium a comparison  between  diffuse sky intensity  and  the  direct 
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F i g .  1.  Densitometric trace  of aureole photograph with obscuring disc for horizontal and verti-  

c a l  scans with 1 ,  r ,  t ,  and b denoting positions  of scans on the   l e f t ,   r igh t ,   top ,  and bottom sides 

of  the disc,  respectively. 



SIZE in  microns 

(1 f t 3  = 2.831 x 10-2m3)  

F i g .  2a .  Examples  of oversize d i s t r i b u t i o n .  

F ig .   2b .   Correspond ing   examples  of d i s t r i b u t i o n .  

solar  intensity,  attenuated  by l o 4  by  a  Neutral  Density 4 (ND4) 
filter.  Thus  far,  in  our  work  at  the  University  of  Florida,  we 

have  only  exploited  the  information  content  in  the  almucantar 

trace  of  the  solar  aureole. 

For  the  convenience  of  analysis,  we  use  an  analytic  size 

distribution  characterized  by  the  cumulative  distribution  function 

(see Fig. 2’) . 
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F i g .  3 .  Phase f u n c t i o n s  for m o d e l   d i s t r i b u t i o n .  

where  N v and  a are adjustable  parameters.  This  corresponds  to 

the  differential  size  distribution 
0' 

dN V r 
dr - N o  v 

v - 1  
n(r) = - - - 

a 11 + (r/a)'12 

This  analytic  size  distribution is a  generalization  of  the  Junge 

power  law  which  is  well  behaved  as  r + 0. 
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We  have  calculated  a  library  of  normalized  phase  function  for 

this  two-parameter  size  distribution  function.  Figure 3 illus- 

trates  several  examples.  Figure 4 illustrates  some  recent  work 

at 640 nm showing  the  sharpness  in  the  determination  of V obtained 

by  this  type of analysis  (Ref. 14). 

Spectral  turbidity  measurements,  such as determined  by  a 

multi-channel  Sun  photometer,  also  give  information  about  the 

particle  size  distribution  (Ref. 15). Green  and  Sawada  (Ref. 16) 

have  determined  the  relative  spectral  turbidities  associated  with 

7 O h .  
5 0  

v = 5  

0" 5" IO" 15' 
ANGLE e 
(b) V = 56. 

Fig. 3 .  Concluded. 
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F i g .  4 .  

compared w i  t h  

I .( 

1 z j 4 0 n m  
Z A = 2  Oo 

0 C e d a r  K e y  

--- m = t.33 

0" 5" I 0" 
S c a t t e r i n g  A n g l e  

M e a s u r e d   a u r e o l e   i n t e n s i t y   a l o n g  the a lmucan tar  

c a l c u l a t i o n s  for three v v a r i a t i o n s  i n  the a e r o s o l  

size d i s t r i b u t i o n .  ( F r o m  R e f .  1 4 . )  

aerosol  size  distributions  characterized  by Eqs. (1) and (2). 

Thus,  aureole  data  augmented  by  spectral  turbidity  data  can  lead 

to  a  very  sharp  determination of v, as  well  as N . 
0 

We  have  considered  the  problem  of  multiple  scattering  in  the 

solar  aureole  (Ref. 17), particularly  in  the  ultraviolet  where 

Rayleigh  scattering  becomes so important.  Figure 5 shows  an  inter- 

comparison  of  three  calculations  (Ref. 18): (1) a  single  scat- 

tering  treatment, (2) a  multiple  scattering  calculation  using  Monte 

Carlo  techniques,  and ( 3 )  a  multi-channel  calculation.  The  cal- 

culation  indicates  that  multiple  scattering  can  be  quite  signifi- 

cant,  particularly  in  the  ultraviolet. 

In subsequent  work,  McPeters  and  Green  (Ref. 14) have  found 

that  Rayleigh  scattering is the  source  of  most  of  this  multiple 

scattering  in  the  solar  aureole  except  at  high  particulate  optical 

depths.  Accordingly,  they  have  proposed  an  analysis  technique 

which  uses  single  aerosol  and  Rayleigh  scattering  augmented by 
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8 (degrees) 

F i g .  5 .  Absol U t e  i n t e n s i t y   a s  a f u n c t i o n  of detector zenith 

a n g l e  €or t w o  d i f f e ren t  Mie s c a t t e r i n g   f u n c t i o n s   a s   c a l c u l a t e d  b y  

three s e p a r a t e  methods. The solid l ines  r e p r e s e n t  the r e s u l t s  of 

the m u l t i - c h a n n e l   c a l c u l a t i o n s ,  the dots a r e  the Monte C a r l o  

r e s u l t s ,  and the d a s h e d   c u r v e s   a r e  the s i n g l e   s c a t t e r i n g   c a l c u l a t i o n s .  

Note the b r e a k  i n  the s c a l e  t o  a v o i d   s u p e r p o s i t i o n  of the. t w o  sets 

of r e s u l t s  . ( F r o m  Ref. 18.) 
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multiple  Rayleigh  scattering  as  determined  by  the  use  of  the  tables 

of Coulson,  Dave,and  Sekera  (CDS)  (Ref. 19). Figure 6 is  an  illus- 

tration  of a fit  to  data  based  upon  such  an  analysis. 

111.  DIFFUSE TO DIRECT  RATIO  MEASUREMENTS 

In  connection  with  our  ultraviolet  studies  in  support of the 

Climatic  Impact  Assessment  Program  (Ref.  201,  we  have  attempted  to 

realistically  characterize  the  diffuse  solar  radiation  or  sky 

radiation  in  the  ultraviolet.  As  it  turns  out,  sky  radiation  in 

the  ultraviolet  is  often of greater  biological  consequence  than 

direct  sunlight.  Green,  Sawada  and  Shettle  (Ref.  21)  have  devel- 

oped  an  approximate  analytic  formula  which  describes  the  diffuse 

spectral  irradiance  in  the  ultraviolet  region  by  adapting a single 

scattering  analysis  to  the  systematics  of  Bener's  experiments 

(Ref.  22)  and  to  theoretical  calculations  of  Shettle  and  Green 

(Ref.  23) 

~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ I  

1.0 L 3 0 9 n m  
Z A = 5 4 O  
11' /22/74 

0 o b s e r v e d  
+ M o n t e   C a r l o  

S c a t t e r i n g   A n g l e  

F i g .  6 .  N o r m a l i z e d   u l t r a v i o l e t   a u r e o l e  intensit ies a l o n g  the 

almucantar  compared w i t h  m o d i f i e d  s i n g l e   s c a t t e r i n g   c a l c u l a t i o n  . 
w i t h  and w i t h o u t  the CDS R a y l e i g h   m u l t i p l e   s c a t t e r i n g  correction 

fac tor .   and   compared  w i t h  a Monte C a r l o   f u l l   m u l t i p l e   s c a t t e r i n g  

c a l c u l a t i o n .  (From R e f  - 14 - )  
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More  recently,  Chai  and  Green  (Ref. 24) have  recognized  the 

merits  of  measurements  of  the  ratio  of  diffuse  to  direct  spectral 

irradiance  as a simple  indicator  of  atmospheric  optical  properties. 

The  ratia  method  is.analogous  in  some  respects  to  our  aureole 

method  except  that  there  we  must  attenuate  the  direct  solar  inten- 

sity  by  four  orders  of  magnitude  to  compare  it  to  the  sky  intensity. 

Figure 7 is  an  example  of  measurements  of  the  total  sky  irradiance, 

the  direct  irradiance,and  the  ratio.  The  diffuse  and  direct  both 

vary  very  markedly,  and  reflect  the  fluctuations  in  the  extra- 

terrestrial  solar  spectral  irradiance  and  in  the  ozone  extinction 

coefficients  as  well  as  in  the  wavelength  dependence  of  instrumental 

sensitivity.  However,  the  diffuse  to  direct  ratio  is  only  slowly 

varying  but  still  sensitively  depends  upon  such  interesting  charac- 

teristics  as  atmospheric  particulate  loading,  ground  albedo,and 

sky  cover.  This  ratio  method  avoids  problems  associated  with  the 

difficulty  of  absolute  spectral  irradiance  measurements  which,  at 

this  time,are  limited  to  about 8% in  the  ultraviolet  region. 

It  should  be  remarked  that  Herman,  et  al.  (Ref. 25) have 

theoretically  examined  such a ratio  method  in  the  visible  region 

in an attempt  to  estimate  the  imaginary  part  of  the  index  of 

refraction  of  atmospheric  aerosols. 

We  shall  next  consider  another  example  of  inverting  of  optical 

data  with  the  aid  of  the  analytic  modeling  approach  and  auxiliary 

information,  such  as  may  be  obtained  with  simple  ground-based 

instruments. 

IV. THE INVERSION OF THE: LOW ALTITUDE OZONE PROFIbE 

Tropospheric  ozone  is a constantly  varyin;  atmospheric  com- 

ponent  which  changes  with  the  season of the  year,  location,and 

time  of  day.  Both  photochemical  and  stratospheric  transport  pro- 

cesses  are  important  sources  of  tropospheric  ozone  and  are  respon-; 

sible  for  the  strong  diurnal,  seasona1,and  spatial  variations. 
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F i g .  7 .  T o t a l ,   d i f f u s e ,  direct, and the r a t i o  of d i f f u s e  t o  
direct components o f  s o l a r   i r r a d i a n c e s   a s  a f u n c t i o n  of wave leng th  

a s  recorded on 31 J u l y  1975 a t  around 13: 50 E S T .  The magn i tudes  

o f  the i r r a d i a n c e s   a r e  i n  r e l a t i v e   s c a l e ;   t h e y   a r e   p r o p o r t i o n a l  t o  

the p h o t o m u l t i p l i e r   o u t p u t  i n  100 VV. (From R e f .  24.) 

A systematic  program  of  balloon-borne  ozonesonde  observations 

has  provided  valuable  data  on  the  altitude  structure  of  ozone  which 

can  be  used  as a guide  in  constructing a versatile  analytic  model 

(Ref. 26). We  consider  in  what  follows  the  possibility  of  infer- 

ring  the  tropospheric  ozone  profile  from  diffuse  to  direct  ratio 

measurements  in  the  middle  ultraviolet  in  conjunction  with  ozone 

point-sampling  at  the  ground.  We  model  the  altitude  profiles  of 

the  atmospheric  components  with  analytic  functions  because  such 

309 



a  technique  simplifies  data  inversion  and  provides  a  convenient 

way  of  communicating  the  resulting  profiles. 

Green  (Ref. 8) has  modeled  the  stratospheric  ozone  column 

density as  a.function of  altitude  y  with  a  distribution  used 

extensively  in  the  nuclear  studies  (the  so-called  Wood-Saxon 

function)(Refs. 3 and 4) 

wo(l + e-'o/h) 

l + e  (Y - Yo)/h 
W(Y) = 

Here  w  is  the  total  ozone  thickness  and  y  and  h  are  parameters. 

The  density  profile  p(y)  is  given  by 
0 0 

W 
- (Y - Yo)/h 

dw o (1 + e p(y) = - - = - 
dY h (1 + e  (Y - Yo)  /h) 2 

The  parameter  y  is  the  altitude  at  which  the  density  function 

peaks  and  h  scales  the  width  of  the  distribution.  Green  (Ref. 2) 

shows  how  y  h  and  w  can  be  approximately  inferred  from  solar 

backscatter  ultraviolet (UV) measurements.  In  their  recent 

analysis  on  ground  level W, Shettle  and  Green  (Ref. 23) add  an 

exponential  term  to  this  function  to  allow  for  the  tropospheric 

ozone  component.  Here  to  characterize  tropospheric  ozone  profiles 

which  are  coficave,  i.e.,  the  density  decreases  with  altitude  above 

the  ground  and  then  increasing  at  the  tropopause,  we  add  a  second 

term  of  the  form of Eq.  (3) or (4) with  the  parameters  y ' and  h' 
and  where  w  is  now  the sum of  w + w l .  

0 

0, 0 

0 

T 0 0 

In  Fig. 8, several  profiles  corresponding  to  various  values 

of  h'  and p(0)  are  shown.  Here  y = 0 and  w = 0.29 atm-cm;  and 

and  h  are  set  to 23 km and 4 km, respectively.  Extreme  con- 

cave  profiles  can  be  obtained  as  well  as  curves  of  almost  constant 

density.  Furthermore,  convex  profiles  can  be  generated  with  two 

distributions  by  setting  y  to  be  a  positive  number.  Convex  pro- 

files  are  observed  with  greatest  frequency  in  the  summer  months  at 

latitudes  above 40 N. 

0 0 

YO 

0 

0 
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Assuming  we  know  the  ground  level  ozone  density  and  also  that 

the  ozone  profile  can  be  represented  by a two  component  model  with 

y' = 0, we  can  test  the  sensitivity of the  diffuse  to  direct  ratio 

to  the  parameter  h'.  In  Fig. 9, we  plot  the  ratio  versus  h'  for 

p ( 0 )  = 40, 70, 100 (pg/m3)  for a wavelength  of 300 nm. We  take 

= 23 km and  ho = 4 km. Furthermore,  we  have  assumed  the  air 

and  aerosol  profiles  of  Shettle  and  Green  (Ref. 23) which  are  based 

on  Eltennan's 1964 data  (Ref. 27). The  total  aerosol  optical 

depth  is 0.411; the  aerosol  is  characterized  by  the  cumulative 

size  distribution  given  by Eq. (1) with v = 3 and a =0.03 m; the 

YO 
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Fig. 9 .  D i f f u s e  t o  direct r a t i o   d e p e n d e n c e  on the s c a l e  

p a r a m e t e r  h' f o r  ground ozone densit ies of 4 0 ,  70,and 100 vg/m . 3 

aerosol  index  of  refraction  is  1.5 + .Oli;  a  ground  albedo  of  0.05 
is  assumed;  and  the  Sun  is  directly  overhead.  The  ratios  are  cal- 

culated  by  using  the  multiple  scattering  technique  of  Sh.ettle  and 

Green  (Ref.  23). 

The  diffuse  to  direct  ratio  then  can  be  used  to  infer  a  value 

of  h'  from  a  set  of  curves  as  in  Fig. 9 when  used  with  point 

sampling  measurements  which  give  the  ozone  concentrgtion  at  the 

ground. 

Other  simple  and  inexpensive  measurements  can  be  made  simul- 

taneously  with  the  ratio  and  point-sampling  measurements  in  oxder 

to  further  delimit  the  inversion  and  reduce  the  mcertainties.  For 

example,  aureole  photography  can  be  employed  to  infer  the  aerosol 

size  distribution  parameters  (Refs. 10,  12, and 14). Also, 

312 



multi-wavelength  photometry  provides  valuable  information on  the 

aerosol  optical  thickness  and  its  wavelength  dependence  (Refs. 15 
and 16). 

The  two  most  nebulous  parameters  are  the  aerosol  single 

scatter  albedo  and  the  ground  albedo. It  is  important  to  know  how 

uncertainties  in  these  parameters  propagate  through  the  inversion. 

The  aerosol  single  scatter  albedo  will  depend  on  the  aerosol  index 

of  refraction  and  size  distribution.  By  using  aureole  photography 

to pin  down  the  size  distribution,  one  can  draw on experience  from 

previous  investigations  to  fix  the  aerosol  index  of  refraction 

within  a  range  of  confidence.  For  example,  bistatic  laser  and 

aureole  photography  methods  (Ref.  28)  indicate  that  the  index  of 

refraction  of  a  typical  Gainesville  aerosol  is 0.005 0.005 for 

the  imaginary  part  and 1.50 k 0.05 for  the  real  part.  The  diffuse 

to  direct  ratio  is  found  to  be  relatively  insensitive  to  this  range 

of  possible  error.  Similar  considerations  apply  to  the  ground 

albedo.  In  the  theoretical  model  a  ground  albedo  of 0.05 was 

assumed  which  is  compatible  with  measurements  by  Furukawa  and  Heath 

(unpublished  reports,  1973)of  various  natural  surfaces  for thewave- 

length  region  310  to  380 nm. For  example,  they  found  that  €or  scrub 

desert  the  ground  albedo  was 0.04 over  the  310  to  380 nm region. 

For  farmland,  70%  tilled  and  30%  covered  with  vegetation,  theground 

albedo  was  found  to  be 0.07 to 0.08 for  the  310  to  340 nm region. 

Small  errors  in  the  ground  albedo  (ZO.02)  do  not  significantly 

affect  the  calculations.  Furthermore,  once  the  ground  albedo is 

known  for  a  given  location,  the  daily  variations  of  h'  can  be 

determined,  unless,  of  course,  the  surface  changesbecause  of  snow ' 

cover,  cultivation,  or  the  like. 

If  the  true  optical  depth  is  used  in  the  inversion,  then 

underestimating  the  ground  albedo  or  the  aerosol  single-scatter 

albedo  will  lead  to  calculated  ratios  which  are  too  small. 

Overestimation  will  lead  to  calculated  ratios  which  are  too  large. 

Diffuse to direct  ratio  measurements  in  the 320to340 nm region 
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can  be  used  to  infer  effective  aerosol  optical  depths  here  since 

in  this  region  the  ratios  are  rather  insensitive  to  tropospheric 

ozone..  The  effective  optical  depths  can  be  extrapolated  to  smaller 

wavelengths..  These  effective  optical  depths  will  be  somewhat  dif- 

ferent  from  the  true  aerosol  optical  depths  and  will  tend  to  com- 

pensate  for  errors  in  the  ground  albedo  and  aerosol  single- 

scatter  albedo.  The  diffuse  to  direct  ratio  around 300 to 320 nm 

is  insensitive  to  the  altitude  distribution  of  the  aerosols so 

long  as  the  ozone  profile  near  the  ground  is  not  changing  too 

rapidly.  Also,  detailed  knowledge  of  the  stratospheric  ozone 

structure  or  thickness  is  not  required. 

v. CONCLUDING REMARKS 

Strictly  numerical  methods  of  inversion  are  becoming  pre- 

dominant  in  remote  sensing  these  days.  These  are,  of  course, 

valuable  to  infer  the  irregularities  and  statistical  fluctuations 

in  atmospheric  properties.  The  analytic  model  method  which  we 

have  illustrated  can  be a valuable  supplement  to  such  numerical 

methods.  They  are  particularly  useful  when  used  in  conjunction 

with  dynamical  models  of  atmosphere  structure  because  of  the 

additional physical~input of  such  models.  When  the  models  are 

joined  to  ground-based  point  sampling  data,  this  remote-sensing- 

analytic  model  approach  gives  approximate  answers  to  important 

questions  involved  in  many  public  policy  decisions  on  atmospheric 

pollution. 
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SYMBOL 

size  distribution  parameter,  corresponds  approximately  to 

the  size  of  particle  where  n(r)  peaks 

ozone  distribution  parameter  which  is  proportional  to 

width  of  ozone  density  function;  prime  denotes  another 

value  of h 

real  part  of  aerosol  refractive  index 
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absolute scattered i n t e n s i t y  

d i f f e r e n t i a l   a e r o s o l   s i z e   d i s t r i b u t i o n  

cumula t ive   aerosol   s ize   d i s t r ibu t ion  

size d i s t r i b u t i o n  parameter which is e q u a l   t o   t o t a l  num- 

ber of aerosol particles 

aerosol  particle rad ius  

t o t a l  ozone  thickness; prime denotes  another  value of w 

t h e  ozone  thickness  function 

a1 t i t u d e  

a l t i t u d e  a t  which  ozone  density  peaks; prime denotes 

0 

another  value of y 
0 

zeni th   angle  

sca t t e r ing   ang le  

s ize   d i s t r ibu t ion   parameter  which determines p o w e r  l a w  

dependence  of n ( r )  a t  l a r g e  r 

ozone  density  function 

op t i ca l   dep th  
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DISCUSSIONS 

Deirmendjian: With  regard  to  the  importance  of  multiple  scattering 
in  the  aureole, I don't  want  to  blow  my  horn,  but I certainly  wish 
to  protect  Professor  Sekera's  memory. In my  1956  doctoral  thesis, 
I looked  at  the  problem of the  solar  aureole  at  his  suggestion. 
The  method  used  was  essentially  Sekera's  idea  and  consisted  of 
treating  the  aureole as a perturbation on the  Rayleigh  multiple 
scattered  skylight.  And  that is precisely  what I did.  Have  you 
seen my original 1957 paper on the  aureole? 

Green: Yes,  we  have  seen  your  paper. 

Deirmendjian: It  was  exactly  that.'  You  increase  the  optical 
thickness  of  the  Rayleigh  atmosphere  by  adding a perturbation 
optical  thickness  due  to  the  aerosols.  When  you  do  that,  it  is a 
kind  of  hybrid  method  where  single  scattering  on  the  aerosols  pro- 
duces  the  aureole,  but  multiple  scattering,  mainly  on  the  Rayleigh 
particles,  produces  the  rest  of  the  background  skylight. I thought 
yok  didn't  make  that  clear. 

Green: We  weren't  aware  of  that  aspect  of  your  paper  back  then. 
We  were  aware  of  your  work  on  the  aureole  and  we  have  quoted  it  in 
our  work. 

Deirmendjian: I think  that  was  the  principal  point. I have  since 
reexamined  this  method  in  1970. I did  not  publish  the  results  -in 
the  open  literature  due  to  lack  of  funds.  But  they  are  available 
in a formal 1970 Rand  Corporation  report,  in  which I introduced 
new  phase  functions.  Indeed,  the  curves  that  are  obtained  look 
very  much  like  some  of  the  measurements I have  seen.  Subsequently, 
I intended  to  compare  them  with  the  measurements  and  look  into 
their  use  to  get  information  about  the  aerosol  size  distribution. 
At  the  time, I was  unable  to do this  for  lack  of  support. 

Green: Well,  there  was  no  intention  to  slight  you  or  Professor 
Sekera.  We  have  in  our  work  in  this  area  acknowledged  this.  The 
W problem  has a new  interest  in  light  of  its  biological  aspects. 
So part of this  work  was  directed  toward  answering  some  particular 
questions  about  the  radiance  of  the W aureole  where  some  serious 
problems  remained.  My  point  about  the  low  altitude  ozone  distri- 
bution  is  that  you  can  take  advantage  of  the  extra  scattering 
associated  with  aerosols to extend  the  path  and  the  absorption  in 
the  low  altitude  ozone  layer.  Thus,  you  can  actually  drag out a 
little  information  about  the  high  altitude  distribution,  but  little 
about  the  low  altitude  profile. 

Weinman: While I agree  with  the  previous  speaker  that  the  aureole 
technique  is a powerful  one  for  determining  size  distributions, I 
should  point  out  that  invisible  cirrus  clouds  can  plague  this 
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technique.  While  there  are  frequent  cases  where  you  can  get  nice 
smooth  functions  to  which  you  can  apply  the  theory,  this  hazard 
always  exists.  If  one  looks  at  this  data,  one  can  pick  up  cirrus 
clouds  which  are  not  at  all  visible  to  the  naked  eye. I think 
that  it  takes a certain  amount  of  judicious  discrimination  to  get 
cases  to  which  you  can  apply  the  radiative  transfer  theory. 

Green: I think  Adarsh  has  shown  some  results  where  contours  of 
isodensity  on a film  show  distortions  that  are  suggestive  of a 
thin  cloud  layer.  In  some  of  our  work,  we  have  noted  some  problems 
of that  nature,  which  one  can,  perhaps,  use  as  information  content. 

Deepak: Yes,  we  have  been  looking  at  the  shapes  of  the  solar 
aureole  isophotes  rather  carefully  and  we  see  small  bumps.  The 
isophote  curves  are  not  very  smooth.  That  could  be  due  to  the 
presence  of  thin  clouds.  In  fact,  we  have  an  airport  nearby; 
when  aircraft  take  off  we  can  easily  detect  the  presence  of  con- 
trails  from  the  systematic  distortion  in  the  shape  of  the  isophotes 
over  the  region  of  the  contrail  image. 

F y m a t :  I was  very  interested  in  your  conclusion  in  determining  the 
scale  height  for  the  troposphere. 

Green: For  the  tropospheric  ozone  distribution. 

F y m a t :  Yes,  but  you  need,  as  you  say,  the  ozone  distribution  at 
the  lower  altitudes.  However,  it  seemed  to  me,  and  Dr.  Mateer  may 
care  to  comment  on  it,  that  the  actual  ground-based  Dobson  measure- 
ments  are  really  being  phased  out  in  view  of  the  fact  that  they 
produce  different  results  on  inversion  using  different  methods. 
So, if  we  cannot  get  the  distribution  at  the  lower  altitudes,  how 
practical  is  your  conclusions 

Green: Well,  insofar  as  profile,  the  Umkehr  method  (not  the.Dobson 
method)  relies,  and  Carl  can  correct  me  since,$e  is  much  more 
expert,  on  the  setting  of  the  sun  and  inverting  sky  radiances.  Our 
method  could  be  worked  at  high  noon  since  it  is  instantaneous.'  We 
would  use  wavelength  information  and  we  have,  in  effect, shown-by 
simulated  tests  that  the  diffuse  to  direct  ratio is only  sensitive 
to  the  addition  of  extra  ozone  below  about 10 kilometers.  So'that 
while  it  is  not a complete  profile,  if  you use'9t in  conjunction 
with  ground  level  chemical  measurement,  it  gives  you  information 
which  relates  to  the  lower  atmospheric  ozone  and  it is insensit-ive 
to  the  stratospheric  ozone  which  is  far  more  abundant.  Now am I 
lorrect  that  the  Umkehr  method  more  or  less  gives  you  the  mos't 
nformation  about  the  higher  atmospherjc  ozone? So there  is  no 
?a1  contradiction  with  anything  previously  known. 
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Mateer: The  Umkehr  measurement  is a different  kind  of  measurement. 
It  is a ratio  measurement  of  two  wavelengths-.as  opposed  to  what  you. 
are  doing--a  ratio  of  diffuse  to  direct  sunlight. 

Green: Yes.  We  also  are  helped  if  we  use  two  wavelengths  as  well. 
It  eliminates a little  bit of the  absolute  radiometry  problem.  It 
gives  us  another  check. 
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OPEN  DISCUSSIONS I 

King: Alex,  what  do you th ink  w e  can  learn abou't so lv ing   the  
atmospheric  temperature  inversion problem from the   s imi l a r  type 
inversion problem in   in fer r ing   nuc lear   po ten t ia l   in   nuc lear   phys ics?  

Green: Well, I w a s  d i scuss ing   t h i s   t ype  of thing  with D r .  Wark, 
and the  analogy would be if w e  brought t o   b e a r  t o  t h e  problem a l l  
the  physical   dynamics  data,   not  only a t  one  location  but a t  adja- 
cent   locat ions.  Thus, i f  w e  had r e l a t i v e l y  few ques t ions   t ha t  we 
posed t o   t h e   r a d i a t i v e   t r a n s f e r  problem, f o r  example, t o  ge t   hor i -  
zon ta l   g rad ien t s   i n   t empera tu re   p ro f i l e ,  and  perhaps  include  such 
f a c t s   t h a t   t h e r e   t e n d s  t o  be a tropopause  and w e  are mainly  inter-  
es ted where the  temperature  break  occurs,  and ask  quest ions which 
embody a l l  of our experience as t o  reasonable  temperature  profiles.  
Then when w e  apply   th i s   ex te rna l   in format ion   to   an   invers ion   prob-  
lem, it i s  usual ly  much easier t o  come t o  a physically  reasonable 
answer. Now I don ' t  k n o w  i f   t h a t ' s  a good paraphrase  of  the 
analogy. We do  have  one  problem  which I have to   con fes s  compromises 
<he analogy.  In  the case of  the  nuclear  force  problem w e  th ink  a l l  
neutrons  and  protons are the  same,  and unfortunately  the  atmosphere 
takes  on so many d i f f e r e n t  states t h a t  we do  have that ex t r a  com- 
p l i ca t ion .  Thus, i f  you t r i e d   t o   u n f o l d  many, many d e t a i l s  of   the 
instantaneous  atmosphere, you may be in   t rouble   wi th   th i s   approach .  
On the   o ther   hand ,   i f  you are satisfied  with  answering  the  types  of 
physical   quest ions  that   our   dynamical   meteorologis ts ,   pol lut ion 
exper t s ,   o r   b io logis t s  want  answered, I think you g e t  a l o t  of -use-  
ful   information by these  modeling  approaches. 

Herman: Alex, I would l i k e  t o  ask  you, what is  t h e   s e n s i t i v i t y  of 
the   d i rec t   d i f fuse- - insofar  as solving  for   ozone-- to   var ia t ions  in  
aerosol  contents? Because as you know  we a re   t ry ing   t o   app ly  it t o  
learn  various  parameters  of  the  aerosol.  Now you are   using it t o  
learn  about  the  ozone  but it still has a s e n s i t i v i t y   t o   a e r o s o l s  
even a t  the  ul t raviolet   wavelengths .  

Green: Yes, I should,   unless I commit another   error  of omission, 
mention t h a t  Ben has   used   the   d i rec t - to-d i f fuse   ra t io  t o  i n f e r   t h e  
imaginary  par t   of   the   index  of   refract ion  mrking a t  500 nanometers. 
W e  were not  aware of t h i s  work when w e  s t a r t ed   ou r s ,   bu t  were aware 
of it during i t s  course. I th ink   t he   t r i ck   i n   ou r   ca se  is  t o  
choose two wavelengths--one in   t he   r eg ion  where the  ozone i s  
absorbing  and  one where it i s  nonabsorbing, Then w e  take  advantage 
of  whatever we know about  our  aerosols,   including a ground-level 
aerosol  measuring  device,  plus  an  aureole  measuring  device. I 
would not  go  to  anything  expensive  l ike a l idar .  But I t h i n k   i f  
w e  bound our  aerosol model somewhat w e  f ind  by sens i t i v i ty   ana lyses  
t h a t  w e  do g e t  some information  about  the low level  ozone.  This is  
what w e  would pick up  by using two wavelengths,   just  as Dobson does. 
W e  would go t o  about 320 nanometers  and  then t o  305 nanometers. W e  
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would expec t   tha t   the   aerosols  do not  change  very much, so that we 
hold  the aerosols confusion  factor  down. 

Goulard:  I am t ry ing  t o  apply  inversion  techniques t o  t h e   f i e l d  
of combustion. I g e t   t h e   p r o f i l e s   o f  temperature or concentrations 
following  the  methods  that  D r .  Chahine  has  developed.  But, I g e t  
them i n  terms of optical  thickness.  And  when I want t o  convert it 
t o  physical   th ickness ,  which is  what the  combustion people want, I 
f i n d   t h a t  I cannot  depend  on the  constant   concentrat ion  of  C02 as 
you do i n   t h e  atmosphere.  Could someone give m e  some help on how 
t o  g e t  around t h i s  problem in  frequency  scanning  only? 

Chahine: L e t  m e  answer  Professor  Goulard's  question on the  so lu-  
t ion   in   t e rms   of   the   op t ica l   depth .  You know,  the  independent 
v a r i a b l e   i n   t h e   r a d i a t i v e   t r a n s f e r   e q u a t i o n  i s  T bu t  w e  set d r  = 
(a r /az)dz   in  the equation and obta in  a so lu t ion  as a function of 
the   phys ica l   sca le   z .  As you know ar/az i s  obtained  on  the  basis  of 
an  atmospheric model.  Thus, t he   so lu t ion  is t r u l y  a func t ion   of .  
r although it i s  usual ly   presented as a function  of z .  The t rans-  
formation  from  the  r-scale  to the z-scale is done  through a model. 

Goulard:  You assume Laplace Law of  the atmosphere and a constant  
mixing ra t io? 

Chahine: Yes, w e  have t o  do t h i s .  

Goulard:  And f o r  a flame? 

Chahine: You would have to   deve lop  a model f o r  your  flame and 
cor re la te   your   op t ica l   depths   wi th  a physical  scale. 

Goulard:  Is the   concent ra t ion   of  C02 real ly   constant   throughout  
the  atmosphere? 

Green: Well, it is ,  yes ,   wi thin a small period  of time. There 
a r e  some people who th ink  it is  growing. 

\ 

r 

Gille:  The concentration  of C 0 2  in   the   t roposphere  is q u i t e  con- 
s tan t   a l though  no t   abso lu te ly  so. It var ies   seasonal ly  by perhaps 
one part per   mil l ion  out   of  a background  of 330 with a long-term 
trend  of,   perhaps,  0.7 ppm per year. 

'h. 
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COMPARISON OF LINEAR INVERSION METHODS BY 

EXAMINATION OF THE DUALITY BETWEEN 

ITERATIVE AND INVERSE 

MATRIX METHODS 

Henry E. Fleming 
N a t i o n a l   E n v i r o n m e n t a l   S a t e l l i t e  Service, NOAA 

L i n e a r   n u m e r i c a l  inversion m e t h o d s   a p p l i e d  t o  a t m o s p h e r i c  
r e m o t e   s o u n d i n g   g e n e r a l l y   c a n  be c a t e g o r i z e d  i n  two  ways:  
(1)  i t e r a t i v e ,  and ( 2 )  inverse matr ix   methods .   However ,  these 
two c a t e g o r i e s   a r e  not u n r e l a t e d ;  a d u a l i t y  exists b e t w e e n  
them.  In other w o r d s t  g i v e n   a n   i t e r a t i v e   s c h e m e ,  a corre- 
s p o n d i n g  inverse m a t r i x   m e t h o d  exists! and conversely. This 
d u a l i t y   c o n c e p t  is d e v e l o p e d  f o r  the more f a m i l i a r   l i n e a r  
methods .  The i t e r a t i v e   d u a l s   a r e   c o m p a r e d   w i t h  the c l a s s i c a l  
l i n e a r   i t e r a t i v e   a p p r o a c h e s   a n d  their differences a n a l y z e d .  
T h e  i m p o r t a n c e  of the i n i t i a l   p r o f i l e  i n  a l l   m e t h o d s  i s  
stressed. C a l c u l a t i o n s   u s i n g   s i m u l a t e d   d a t a   a r e  made t o  com- 
p a r e   a c c u r a c i e s   a n d  t o  examine  the dependence o f  the s o l u t i o n  
on the i n i t i a l   p r o f i l e .  

I. INTRODUCTION 

When working wi th   d i f fe ren t   l inear   invers ion  methods,  one 

f i n d s   t h a t  some of t h e   i t e r a t i v e  and inverse  matrix methods y i e ld  

similar accuracies.  Therefore,  one  might  conjecture  that  these 

methods are simply  duals of each  other ,   that  is, given  an itera- 

t i v e  method, t h e r e   e x i s t s  a corresponding  inverse  matrix method 

t h a t   y i e l d s   t h e  same answer, and conversely. It turns   .ou t   tha t  

t h i s  is  t r u e   f o r  a s i g n i f i c a n t  class of l inear   invers ion  methods. 
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Furthermore,  the  iterative  methods  are  not,  quite  the  clas- 

sical  ones  in  that  they  are  not  iterated  to  convergence.  Instead, 

they  are  iterated  only  until  the  residual  variances  are  equal  to 

the  variance of the  instrumental  noise.  This  leads  to  solutions 

that  are  different  from  the  classical  ones.  Consequently,  the 

duality  between  methods  is  not  exact,  that  is,  the  solutions  to 

the  dual  equations  agree  only  to  within-'a  certain  degree of 

accuracy.  This  requires  us  to  speak  of  "virtual  duality"  instead 

of  duality  in  the  exact  sense. 

The  general  outline  of  the  paper  is  to  first  develop  the 

duality  principal  for  the  least  squares  solution.  For  this  case 

the  duality  is  exact,  but  this  solution  is  unstable.  Hence,  we 

must  resort  to  regularized  solutions  for  which  we  can  have  only 

virtual  duality. 

The  principle  of  virtual  duality  first  is  established  for 

the  Twomey-Phillips  solution.  Then,  the  results  are  extended  to 

a  more  general  class  of  solutions.  Finally,  the  question  of  the 

dependence  of  the  solution  on  the  initial  profile  is  addressed. 

Results  of  calculations  using  simulated  data  are  given  at  appro- 

priate  places  throughout  the  paper. 

11. THE  DUALTTY PRINCIPLE 

A. The  Least  Squares  Solution 

Most  atmospheric  remote  sounding  problems arereor can  be 

reduced  to,  a  Fredholm  integral  equation of the  first  kind,  which 

can  be  approximated  numerically  by  a  linear  system  of  equations 

(Ref. 1) of  the  form 

A x = y  (1) 
% I 

The  n x m (m > n)  matrix ,A is  the  matrix  of  weighting  functions, 
x is  the  m-dimensional  source-function  vector,  and  y  is  the  vector 
of  n  measured  values. 

,., 
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To illustrate  the  duality  principle,  we  begin  with  the  least 

squares  solution of Eq.  (11,  namely, 

where  the  superscript T denotes  the  transposed  matrix.  Of  the 

infinite  number of solutions  to Eq. (1),  the  solution  in  Eq. ( 2 )  

is the  unique  solution  which  has  minimum  Euclidean  norm  and  exists 

because  the  weighting  functions  are  chosen  deliberately  to  be 

linearly  independent.  Since A has  full  rank  (i.e.,  rank  n),  this 

solution  is  also  the  generalized  inverse  (or  Moore-Penrose  pseudo- 

inverse)  solution of Eq. (1). 

.On  the  other  hand,  the  classical  iterative  solution  (i-e., 

solution  by  successive  approximations)  to  Eq. (1) is  given  by 

where-xk is  the  kth  successive  approximation  to 5 and a > 0 is a 

convergence  (relaxation)  factor.  We  say  that  Eq. ( 3 )  is  the  dual 

of Eq. (2) , and  conversely,  because  in  the  limit  Eq. ( 3 )  yields 

the  solution  in  Eq. (2), and  conversely.  This,  then,  is  an 

example  of  what  we  mean  by  the d u a l i t y  pr inciple  between  inverse 

matrix  and  iterative  inversion  methods. 

To show  that  Eq. ( 3 )  is  the  dual of Eq. ( 2 ) ,  we  write Eiq. (-3) 

in  terms  of  the  initial  approximation  vector x by  combining 0 

at  the  following  equations: iterations  to  arrive 
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where  we  used  the  identity 

and  we  repeatedly  used  the  identity 

and  where  denotes  the  R-dimensional  identity  matrix.  Note  that 

a  superscript  on  a  vector  (a  lower  case  letter)  is  an  iteration 

index  while  a  superscript on a  matrix  (a  capital  letter)  repre- 

sents  a  power. 

Now  the  iterative  scheme  in  Eq. (4) converges  if  the  Euclidean 

norm  of  the  matrix  difference  with  the  exponent k in  the  last  line 

is  less  than  unity.  Since 

and  since 1 1  I I I = 1 , we  have 
d n  

Under  the  condition  that ci < 2 /  1 1  ,A ,A 1 1  , Eq. (4) becomes T 

Since  this  solution  agrees  with  the  solution i'ii Eq. (21, we  have 

established  the  exact  duality  between  Eqs. (2) and ( 3 ) .  

While  Eqs. (2) and ( 3 )  are  an  example  of  the  duality  prin- 

ciple,  in  practice,  neither  solution  is of much.xwalue  because  the 

matrix  AAT  is  generally  ill-conditioned  with  respect  to  matrix 

inversion.  The  ill-conditioning  arises  from  the  fact  that 

typically  the  weighting  functions,  which  are  the  rows of A, are 

very  smooth  and  broad,  and,  hence,  overlapping.  Furthermore,  the 

vector y is  always  contaminated  by  measurement  noise  which  is 

-% 
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amplified by (AA ) . Consequently, the solutions  in E q s .  (2) and T -’ 
m 

(3) are unstable and, hence,  of  no  use  in remote sounding  appli- 

cations. 

Figure 1 shows just how unstable least  squares (generalized 

inverse) solutions can be. It is based on 139 radiosonde profiles 

from March 1973 which were almost  uniformly  distributed  between 

RMS  TEMPERATURE ERRORS, OC 

F i g .  1. Profile of the rms errors between the l e a s t   s q u a r e s  

s o l u t i o n s  and   rad iosondes  f o r  139 s i m u l a t e d   c a s e s .  (1 b a r  = 100 kPa . )  
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the  equator  and 70° N. Clear  radiances  were  calculated  for  the 

six  CO  Vertical  Temperature  Profile  Radiometer  (VTPR)  channels 

and  were  contaminated  with  noise  by a random  number  generator 

using a normal  distribution  with a standard  deviation  of  0.25  mW/ 

(m2 sr cm ) . These  radiances  were.  then  used  in  the  least  squares 
retrievals.  The  curve  in  Fig. 1 represents  the  139  rms  tempera- 

ture  differences  (at  the  15  mandatory  pressure  levels  indicated). 

between  the  retrieved  profiles  and  the  radiosonde  profiles  (the 

"truth").  Clearly,  these rms errors  are  unacceptably  large--they 

vary  from  around  3OC  at  three  levels  to  19.2OC at 1000 mb. (1 bar 

= 100 kPa.) To obtain  stable  and  physically  realistic  solutions 

to Eq. (11, one  must  resort  to  regularization  methods  which  sta- 

bilize  the  ill-conditioned  matrix  that  is  to  be  inverted. 

2 

-1 

. 
B. The  Twomey-Phillips  Solution 

The  first  regularized  solution  of  Eq. (1) that  we  will  con- 

sider  is  that  of  Twomey  and  Phillips  (Ref. 21, which  is  also  known 

as  the  "minimum  information  solution"  (Ref. 1). Regularization 

methods  are  designed  specifically  to  solve  Eq. (1) in  the  form 

A x = y + &  (7) 
%- - - 

where y - is  st,ill  the  n-dimensional  vector  of  measured  quantities, 
but E is  the  n-dimensional  vector of measurement  errors, so that 

y + E would  be  the  errorless  vector.  The  Twomey-Phillips  solution 

of  Eq. (7 )  is 

I 

- - 

2 = x + A (AA + y:,) (2 - 3") 0 T T  -1 
% %% 

where 5 is  an  initial  approximation  to  the  solution  and y is  the 

smoothing  (or  regularization)  parameter. 

0 

We  must  now  establish  the  iterative  dual  to  Eq. (8), which 

requires  the  matrix  identity 
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This   i den t i ty  permits u s  t o  'write Eq. (8) i n   t h e  form 

j t  = x + 1/Y$ (y - 'LA) 
0 T (10) 

Proper   in te rpre ta t ion   o f   th i s   equa t ion   y ie lds   the   requi red  i ter-  

ation  formula.  We start t h e  i terative process by se t t ing  $ = x 
on the  r ight-hand  s ide  of  Eq. ( l o ) ,  t h a t  is, w e  introduce a one- 

step lag between t h e  8 ' s  on t h e   l e f t -  and  r ight-hand  sides  of  the 

equation. Then zo and p on the  r ight-hand  s ide are updated  with 

t h e  last  approximation  of on t h e   l e f t .   I f  a i s  used as t h e  con- 

vergence   fac tor ,   the   fo l lowing   i t e ra t ive   equat ion   resu l t s :  

0 

This   interpretat ion  of  Eq. (10) i s  pu re ly   heu r i s t i c ,   bu t  it w i l l  

be   j u s t i f i ed   i n   t he   nex t   s ec t ion .  

Now, the  convergent  solution  of Eq. (11) i s  not   the  dual   of  

t h e   s o l u t i o n   i n  Eq. ( 8 ) .  To see t h i s ,   u s e   t h e   r e l a t i o n s h i p s   i n  
~ 

Eq. ( 4 )  with  replaced  everywhere by  l/yA . Then for  
T %  a < 2 y/l l ,A ,A 11, w e  have 

T 
% 

which again is  the   l ea s t   squa res   so lu t ion   o f  Eq. (1) and,  there- 

fo re ,   no t   t he   dua l   o f   t he   so lu t ion   i n  Eq.  (8). In   the   next   sec t ion  

the   p rocedure   fo r   f i nd ing   t he   v i r tua l   dua l   o f   t he   so lu t ion   i n  

Eq.  (8) is  described. Recall from the   i n t roduc t ion   t ha t  w e  cannot 

have  exact   dual i ty   for   regular ized  solut ions.  

C. The Vi r tua l   I t e r a t ive ,Dua l  

In Ref.  3, it i s  shown tha t   the   genera l ized   inverse   so lu t ion  

of Eq. (1) , even when AAT. is s ingular  I can  be  obtained  from  the 

l imi t ing   process  
TAl 
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Furthermore, it is  shown t h a t  by abor t ing   t he  passage t o  t h e  l i m i t  

zero a t  tha t   va lue   o f  y f o r  which t h e   r e s i d u a l  1 1  A2 - y 1 1  i s  

equal t o  t h e  norm of t h e  random e r ro r   vec to r  E of  y, w e  obtain 

t h e  Twomey-Phillips  solution. 

%- - 
- - 

The v i r t u a l   i t e r a t i v e   d u a l  Lo t h e   s o l u t i o n ,   i n  Eq. (8), i s  

found in   an  analogous way. Instead  of  passing t o  t h e   l i m i t  as i n  

Eq. ( 1 2 ) ,  o n e   s t o p s   t h e   i t e r a t i o n  process a t  t h a t  step f o r  which 

the   r e s idua l  1 1  Ax - y 1 1  i s  equal t o  t h e  norm of E i n  Eq. ( 7 ) .  

J u s t  as t h e  amount of smoothing  of t h e   s o l u t i o n   i n  Eq. (8) is  

determined by how soon the  approach  of y t o   z e r o   i n  Eq. (13) i s  

aborted,   the  amount  of smoothing i n   t h e   v i r t u a l   i t e r a t i v e   d u a l  

i n  Eq. (11) i s  determined by how soon the   i t e r a t ion   p rocess  is  

stopped. 

k 
%- - 

The equat ion  that   ensues when t h e   i t e r a t i o n   o f  Eq. (11) i s  

t e rmina ted   a f t e r  k steps i s  given by Eq. ( 4) with A replaced 

everywhere  by l / y A  , namely, 

T 

T 
% 

% 

To p rove   t ha t   t h i s   so lu t ion  i s  the   v i r tua l   dua l   o f   t he   so lu t ion  

i n  Eq. (8) , we must show t h a t   f o r  some f i n i t e  k the   so lu t ion  

5 of Eq. (14) i s  such  that+ = 2 from Eq.  (8) , and t h a t  

1 1  - y 1 1  1 1  ,E 1 1 .  The symbol "^r"  i s  t o  be read as "is 

v i r tua l ly   equa l   t o " ,  whose meaning is  made moge p r e c i s e   i n   t h e  

subsequent  discussion. 

k0  k0 0 ,  
\ 

k0 
.- - 

111. PROOF OF VIRTUAL DUALITY 
v c .  

A. Eigenvalue  Decomposition 

We begin  the  proof of v i r t u a l   d u a l i t y  by f i r s t r e d u c i n g - t h e  

dimensionality  of matrices from m t o  the  smaller dimension n 

where  necessary. The f i r s t  such case is  t h e  power mat r ix   in  

Eq. (14) .   Subtract  xo  from  both  sides  of Eq. (14) , apply   the  
I 
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identity  in  Eq. 

finally  use  the 

( 5 ) ,  then  apply  the  identity  in Eq: (6), and 

identity  in  Eq. (5) again  to  obtain  the  forms 

Now  to  prove  that 5 5 ,  we  make  the  following  substitu- k0 

tion  in  Eq. (15) : 

for ($n - c~/y?$?~)~ and  show  that  this  does  indeed  transform  Eq. (14) 

into  Eq. (8). Then  we  show  that  the  expressions  in  Eq. (16) are 

virtually  equal  €or  the  iteration  index k . Finally,  we  show  that 

the  index  k  is  such  that 1 1  Ax - 51 1 1  = I( E 1 1  Consequently,  the 

two  solutions  in  Eqs. (14) and (8) must  be  virtually  the  same  and 

the  virtual  duality  between  them  is  established. 

k0 0 

0 %I- 

We  start  by  making  the  substitution, of Eq. (16) , in  Eq. (15) 
and  apply  the  identity 

- 
I - (I + B)’l = (I + B) ’B = B ( I  + B) 
%I % I %  % I % % % % %  

-1 
(17 1 

to  arrive at the  Eq. (8). This  proves  that  if  the  substitution 

of  Eq. (16) is  made  in  Eq. (15), then  Eq. (14) is  indeed  the 

virtual  dual  of  the  solution  in  Eq. (8) for k = k . 
0 

Next,  we  show  that  in  the  expression  in  Eq. (16), the  power 

matrix is virtually  equal  to  the  inverse  matrix. To do  this,  we 

must  consider  the  diagonalization  of  the  symmetric  matrix AA . T 

Associated  with the n x n  matrix AAT are  the  n x n  orthogonal 

matrix  of  eigenvectors U and  eigenvalues 4 x2 2 ... 2 x > 0 

such  that 

%%I 

%I% 

%I n 

mT = UAU 
T 

w-wll 

U U = U U T =  I T 
%I %I  %I% %In 
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2r 
A = diag(Al,  ..., A n ) 

where d i a g (  ) denotes a diagonal m a t r i x .  

Now apply  Eqs.  (18a)  and  (18b) t o  the  matrices i n  Eq. (16) .  

This  yields  the  decompositions 

and 

Thus, t h e  whole ques t ion   o f   v i r tua l   dua l i t y  between Eqs. (8)  and 

(11) 

with 

comes down t o  comparing a funct ion of eigenvalues  of  the form 

k 
fk(Z)  = (1 - az )  

one of t h e  form 

h ( z )  = (1 + z ) - l  

where z = X/y 0.  

B. Proof tha t   t he   E igenva lues   a r e   V i r tua l ly  Equal 

Recall t h a t   t h e r e   a r e   s e v e r a l   c o n s t r a i n t s  on the  problem. 

For  convergence w e  need I 1 - az I < 1, o r  0 .< az < 2 ,  bu t   to   p re-  

ven t   a l t e rna t ing   s igns   i n   t he   i t e r a t ion   p rocess ,  w e  use the   fu r -  

t h e r   r e s t r i c t i o n  0 < az s l. Th i s   g ives   u s   t he   i nequa l i t i e s  

0 5 f ( z )  < 1 and 0 < ' h (z )  < 1. k 

To s e e   t h a t   h ( z )  N f (z )  , consider  Fig.  2 ,  i n  which t h e  

curves   for  f (z)   with k = 1,2,4,8,16,32,  and  128 are p l o t t e d   f o r  

a = 0.01. This   value  for  a i s  typ ica l .  The dashed  curve i s  t h a t  

of h ( z )   f o r   t h e  domain 0 S az I 1, t h a t  is ,  f o r  0 2 z S 100.  Note 

t h a t   t h e   v a r i a b l e  x i n  Fig. 2 corresponds  to z i n  Fhe text.. 

k0 
k 

Figure 2 is  t o  be in te rpre ted   in   the   fo l lowing  manner. Given 

the  e igenvalues   of   the   operator  l/yAA'I', which a re   loca ted  on t h e  
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Figure 2. The functions of eigenvalues h (x)   ( the dashed 

curve) and f k ( x )   ( t h e  f a m i l y  of solid  curves) show  how close  the 

eigenvalues  are for the  case a = 0.01. The circles  are  the  six 

eigenvalues of  the  inverse  matrix corresponding to   t he  s i x  eigen- 

vectors of l/yAA . (Note t h a t  the  variable x i n  the f i g u r e  

corresponds to,  the  variable z i n  the  text . )  (1 b a r  = 100 kPa .) 
T 
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x-axis, the-eigenvalues of the inverse  operator, in Eq. (19a), 

are the corresponding points on the dashed curve. Similarly, 

corresponding to these same eigenvalues on the x-axis are the 

eigenvalues of the approximating  operator in Eq. (19b) on the 

family of solid curves for the various iteration indices k. Thus, 



if  one  of  the  k-curves  in  Fig. 2 were  to  lie  everywhere  on  the 

dashed  curve,  that  would  be  the  curve  fk (2) which  we  are  seeking, 

because  then  any  eigenvalue  of  the  one  operator  would  be  an  eigen- 

value of the  other,  and  the  two  operators,  in Eqs. (19a)  and  (19b) 

would  be  identical--giving  us  the  duality  we  are  looking  for. 

However,  it  is  obvious  from  the  figure  that  we  cannot  have  perfect 

agreement  between  any  of  the  k-curves  and  the  dashed  curve. 

Instead,  there  is  a  curve ko which  is  in  best  "virtual"  agreement 

with  the  dashed  curve  in  the  sense  that  the  maximum  departure 

between  the  curves  is  minimized. 

0 

An example  will  clarify  the  situation. A typical  set  of 

eigenvalues  for l/yM based  on  the  six CO weighting  functions  of 
%% 2 

the  VTPR  sounder is given  by ( 0 . 0 3 ,  1.10,  3.84, 11.01, 39.87, 

97.88 } . The  corresponding  eigenvalues  of  the  inverse  operator, 

in Eq. (19a),  are  shown  in  Fig. 2 as  circles  on  the  dashed  curve. 

Notice  that  the  eigenvalues  are  distributed  over  the  entire  extent 

of  the  x-axis.  This  can  always  be  made  to  occur  because  the  con- 

vergence  factor a is  chosen  in  such  a  way  that  (a/y) 1 1  ,A 1 1  < 1. 

Since 1 1  AA 1 1  is  equal  to  the  largest  eigenvalue  of A24 , picking TI T 

a to  be  close  to y/ 1 1  E 1 1  guarantees  that  the  largest  eigenvalue 

of l/yeT is  near  f  (x) = 0, that  is,  near  x = l/a  in  Fig. 2. 

T 

T 

m T %% 

1 

On  the  other  hand,  the  smallest  eigenvalue  will  always  be 

close  to  zero,  because  the  matrix  AAT  is  ill-conditioned  with 

respect  to  matrix  inversion,  that  is,  the  rati;i'between  the  largest 

and  smallest  eigenvalue  (the  P-condition  number)  is  in  considerable 

excess  of  the  value 100. Of  course,  it  was  this  ilel-conditioning 

that  forced  us  to  use  regularization  methods  in  the  'first  place. 

The  smallest  eigenvalue  of  l/yAA  is  the  important  one, 

because  it  corresponds  to  the  largest  one  in  the  inverse  operator 

in Eq. (19a).  In  fact,  since  the  smallest  eigenvalue  is  almost 

zero,  the  corresponding  one  in  the  inverse  matrix  will  be  almost 

one.  It  is  clear  from  Fig. 2 that  the  approximate  operator 

%% 

T 
%% 
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Eq.  (19b)  will  also  have  its  largest  eigenvalue  near  unity,  and, 

in  fact,  the  curves h(x)  and f (x)  have  their  best  agreement  there. k 
This  is  very  encouraging  because  the  norm  of  the  operators  in 

Eqs.  (19a)  and  (19b)  is  equal  to  their  largest  eigenvalues. 

Therefore,  the  two  operators  will  agree  in  the  most  important 

sense--their  norms  will  be  virtually  the  same. 

We  know  from  the  theory of empirical  orthogonal  functions, 
see  Ref. 4 ,  that  the  structure  of  any  positive  definite  matrix,  such 

as  in  Eqs.  (19a)  or  (19b).,  is  determined  primarily  by  its  largest 

eigenvalue,  and  decreasingly so with  decreasing  eigenvalues;  the 

smallest  one  contributes  the  least.  It  is  clear  from  Fig. 2 that 

the  larger  eigenvalues  of  the  matrices,  in  Eqs.  (19a)  and  (19b) , 
match  up  the  best  and  that  the  intermediate  ones  match  up  to a 

lesser  extent.  The  smaller  ones  compare  favorably  again,  but  we 

just  noted  that  they  are  not  very  important. 

It  is  now  clear  that,  graphically  at  least, a case  can  be 

made  for  the  existence  of  virtual  duality  between  solutions,  in 

Eqs. (11) and (8). (A more  precise  argument  is  developed  in a sub- 

sequent  section.)  In  other  words,  there  exists a k such  that  the 

curve f k  (z) is  very  similar  to  the  curve h ( z )  . That  says  that 
the  eigenvalues  of  the  matrices,  in  Eqs.  (19a)  and  (19b),  are  almost 

the  same;  consequently,  the  matrices  themselves  are  almost  the 

same.  This,  in  turn,  says  that  Eqs.  (15)  and (8) give  virtually 

the  same  solutions  which,  finally,  establishes  the  duality  between 

solutions  in  Eqs . (11) and (8) . 

0 

C.  Convergence  Properties 

Figure 2 is  useful  also  in  analyzing  convergence  properties, 

but  first  we  simplify  the  interpretation  of  the  figure  by  letting 

t = az. Then, t,  h, and  all  the  fk's  vary  between 0 and 1, and 

Eqs. (20a)  and (20b) become,  respectively, 
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fk(t) = (1 - t) k 

and 

h ( t )  = (1 + t / a ) - l  

Now imagine tha t   the   x -ax is   in   F ig .  2 has  been  replaced by a 

t-axis t h a t   v a r i e s  between 0 and 1. Thks a l lows   us   to  answer con- 

vergence  questions  very  easily,  because now the  family  of f 

remains  f ixed  for  variable a and the  single  dashed  curve moves 

instead.  

k-curves 

The f i r s t   q u e s t i o n  is: What happens when one  chooses a 

smaller a? From Eq. (21b),  it i s  clear t h a t  a  smaller a produces 

a smaller value  of h. Thus, the  elbow of  the  dashed  curve  in 

Fig. 2 w i l l  move even fu r the r   i n to   t he  lower  left-hand  corner  of 

the   f igure  and become  more L-shaped; This results in   bet ter   agree-  

ment with  one  of  the  f  -curves,  but  a  greater number of   i t e ra t ions  

are required  for  convergence.  Therefore,  the smaller the  choice 

of a, the   t ruer   the   dua l i ty ,   bu t   the   l a rger   the  number of itera- 

t i o n s   t h a t  are required.  

k 

The converse  of  the  foregoing is  t h a t  as a increases ,   the  

number of   i t e ra t ions   decreases ,   bu t   the   dua l i ty  between solut ions,  

i n  Eqs. (11) 'and (8), degrades.  If  the  value  of a is  made too 

la rge ,  it may exceed y/ 1 1  AA 1 1  , i n  which case Eq. (11) diverges. 

What is the graphica l   in te rpre ta t ion  of a divergent   solut ion  in  

Fig. 2? In t h i s  case,  the  dashed  curve w i l l  l i e  e n t i r e l y  above 

the  curve  labeled "k = 1," except a t  t h e   p o i n t   ( 0 , l ) .  Under these 

circumstances, no  amount of i t e r a t i o n  w i l l  yield  a  solution--not 

even t h e   f i r s t   i t e r a t i o n .   I n   f a c t ,   t h e   n o r e   t h e   s o l u t i o n  i s  i ter-  

a ted ,   the   fur ther  the so lu t ion ,   in  Eq. (ll), w i l l  move from the  

co r rec t   so lu t ion   i n  Eq. (8). 

T 
m 

I f  w e  have two i n i t i a l  approximations  of  diffdrent  accuracy, 

w i l l  the more accurate  approximation  require  fewer  iterations  than 

the  less accurate  one? A b e t t c r   i n i t i a l  approximation means t h a t  
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y in  Eqs. ( 8 )  and (11) must  be  increased.  This  implies  that a 

can  be  increased,  since a < y/ 1 1  11 . Hence,  our  question  is 

answered  in  the  affirmative.  More  is  said  about  the  initial 

approximation  in a subsequent  section. 

T 

Finally,  Fig. 2 clearly  illustrates  the  important  fact  that 

the  iterative  analogue  of  regularization  is to terminate  the 

iterations  after a finite  number  of  steps.  The  dashed  curve  in 

the  figure  lies  completely  to  the  right  of  the  solid  curve  labeled 

"k = 128'1..  Therefore,  if  one  were  to  iterate  to  convergence,  the 

agreement  between  h(z)  and.fm(z)  would  be  quite  poor.  Clearly, 

the  optimum  number  of  successive  approximations  is  finite--being 

fewer-  than  128  when c1 = 0.01. 

D. Proof  that  the  Error N o r m  is  Satisfied 

All  that  remains  to  be  proved  is  that  index k is  such  that 

Axko - 1 1  = 1 1  ,E 1 1 ,  where  is  given  by  Eq.  (111,  or  equiva- 

lently,  Eq. (14). To  prove  this,  multiply  Eq. (14) by  the  matrix 

A and  apply  the  identity,  in  Eq. (6), to  the  resulting  equation, 

that  is, 

0 

1 1  'L- 

'L 

where  the  relationship,  in  Eq.  (161,  was  used  for  the  second  line. 

On  the  other  hand,  multiplication  of  Eq. (8) by  the  matrix A 
'L 

and  application  of  the  identity  in  Eq.  (17)  yield 

& = A x  
0 

'L- %" 

which  implies 

%-" 
"y= 

-" 

that 
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where  the  last  equality  follows  from  the  fact  that 8 - satisfies 
Eq. (7). By  comparing  Eqs.  (22)  and  (231,  we  see  that 

k0 iI c\r- Ax - y 1 1  2 1 1  ,E [I., Thus,  the  proof  of  virtual  duality  between 

the  solutions  in  Eqs. (8) and  (ll),  for k = ko, is  complete. 

IV.  CLOSENESS  OF  THE  DUAL  SOLUTIONS 

A. Closeness  of  the  Eigenvalues 

In  the  previous  section,  we  investigated  the  closeness  of  the 

curves  h(z)  and  fk ( z )  geometrically.  Now  we  study  the  closeness 

of  these  two  curves  analytically  to  get a numerical  estimate  of 

their  difference.  The  function  h(z)  is  fixed,  but  the  functions 

fk ( z )  vary  with  k.  Thus,  the  first  task  is  to  find  that k = ko 

for  which f (2) is  closest  to  h(z) . It  is  impossible  to  know k 

a p r i o r i ,  but  an  acceptable  choice  for k is  the  one  that  minimizes 

the  squared  differences  between  corresponding  eigenvalues  of  the 

matrices  in  Eq. (16). However,  the  closed  form  solution  of  this 

minimization  problem  for  arbitrary  eigenvalues  and  arbitrary c1 is 

intractable. As an  alternative,  we  will  do  the  problem  analyti- 

cally,  and  with  the  aid  of  several  approximations,  arrive  at a 

reasonable  (but  not  optimal) a p r i o r i  estimate  of k . 

0 

k 0 

0 

0 

Let t = az,  then,  since 6 G t d 1, an  analytic  measure  of  the 

closeness  between  h(z)  and  fk (z) of  Eqs.  (20a)  and  (20b)  is  given 
by  the  integral 

2 
F(k) = 1’ [ 1/(1 + t/a) - (1 - t)k ] dt 

0 

To  find  the k that  minimizes  this  difference, w”& solve  the 

equation  dF/dk = 0, which  implies  that 

0 
& .  -I - 

If  we  could  evaluate  this  integral  in  closed  form  for a and k, we 
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would  know  k  as  a  function  of a. This  cannot  be  done,  but  the 

approximation (1 - t) In (1 - t) = te-ktl  valid  for  sufficiently 

large k, puts  the  integral  into  the  form 

- j1 [ te-kt/(l + t/a)  ]dt = - a/(2k) 
0 

In  evaluating  the  integral  in  Eq. (26), it  was  assuhed  that  k  was 

sufficiently  large so that  e = 0, and  the  mean-value  theorem 

was  used  to  obtain  the  estimate 

-k 

e 1 -a k %" e 
2ak t dt = - 

a + e  
e-ktdt N - 

for 0 < 8 < 1. It  was  found  empirically  that  a  reasonable  value 

for 8 is a. This  choice  is  based  on  the  observation  that  normally 

a < < 1, and so in  the  interval [ a l a  + 11 the  function  l/t  con- 
tributes  much  more  to  the  integrand  at a than  at a + 1. 

Equations (25) and (26) can  now  be  combined  to  yield 

k = - [(l - 2a) + (1 - 4a) 
1 
4a 

But  since a is  small,  the  approximation  (1 - x) '* 1 - nx  is  valid, 
and  we  obtain  the  following  explicit  expression  for  a  k  that  makes 

the  difference,  in  Eq. (241, small,  but  does  not  necessarily 

minimize  it: 

n 

The  formula  in  Eq.  (27)  is  an  acceptable  approximation  for  k 

whenever a < 0.1. 
0 

Recall  that  in  Fig. 2, we  chose a = 0.01,  in  which  case 

ko = 49 by  the  formula  in  Eq.  (27).  Examination  of  Fig.  2.con- 

firms  that  the  curve k = 49 is a reasonable  estimate,  particularly 

for  matching  the  larger  eigenvalues  of  the  inverse  operators. 

We  can  now  go  back  to  Eq. (24) and  estimate  F(ko).  Using 
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the  approximation 

we  find  by Eq. (27)  that 

The  importance  of  the  relationship,  in Eq. (281,  is  that  it  says 

that  the  integrated  difference  of Eq. (24)  approaches 0 as a -+ 0. 

In  other  words,  h(z)  and  fk (z) can  be  made.  arbitrarily  close  by 

making a sufficiencly  small.  Thus,  the  smaller a is  chosen,  the 

closer  the  virtual  duality  is  to  true  duality. 

B. Closeness  of  the  Twomey-Phillips  Solution  to  Its  Dual 

In  the  previous  section,  we  studied  the  closeness  of  the 

eigenvalues  of  the  dual  matrices;  now,  we  examine  the  closeness 

of  the  solutions  themselves. Shown in  Fig. 3 are  the rms dif- 

ferences  between  the  Twomey-Phillips  inverse  matrix  solution  and 

its  iterative  dual  for  two  different  initial  approximations.  The 

dashed  curve  represents  the rms differences  when  forecasts  are  used 

as  the  initial  profile,  and  the  solid  curve  represents  the rms 

differences  when  average  climatological  initial  profiles  are  used. 

The  structure  of  Fig. 3 is  the  same  as  that  of  Fig. 1, except 

that  the  abscissa  is  in  tenths  of  degrees  instead  of  degrees.  The 

data  used  is  also  the  same  as  that  described  for  Fig. 1, that  is, 

the  same 139 profiles  and  corresponding  simulated  radiances  are 

used. 

The  results  in  Fig. 3 are  as  expected;  the  difference  between 

the  two  curves  is  negligible.  This  indicates  that  the  dual  solu- 

tions  agree  with  one  another  irrespective  of  the  initial  profile 

used, as’long as  the  same  one  is  used  by  both  inversion  methods. 
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RMS TEMPERATURE DIFFERENCES, "C 

F i g  3 .  Profiles o f  the r m s  differences between the dua l  

s o l u t i o n s  o f  the Twomey-Phi l l ips  method u s i n g   f o r e c a s t   ( d a s h e d  

c u r v e )   a n d   c l i m a t o l o g i c a l  (solid c u r v e )   i n i t i a l   p r o f i l e s .  
(1 b a r  = 100 kPa . ) 
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On  the  other  hand,  the  accuracy  of  each of the  two  curves,  although 

reasonable,  is  not  quite  as  good  as  expected.  There  are  three 

reasons  for  this. 

First,  the y used  in  the  inverse  matrix  Twomey-Phillips 
solution  was  the  same  value  for  all  139  cases.  This  prevented 

some  of  the  solutions  from  satisfying  the  requirement  that 

1 1  e - 1 1  = 1 1  5 11. The  scalor y should  have  been  adjusted  in each 

solution  relative  to  the  magnitude  of  the  difference 1 1  Axo - 1 1  . 
However,  we  do  not  have  a  reasonable a priori  method  for  making 

this  adjustment,  and so a  constant  average  value  for y was  used. 

% 

Second,  the  number  of  iterations  for  the  iterative  dual  was 

limited  to 100 which,  according  to  Eq. (27), is  twice  the  number 

needed  for  our  choice  of a = -01.  Nevertheless,  a  few of the 

cases  did  not  converge  in  the  sense  that 1 1  Axk, - 1 1   1 1  1 1 .  
Again,  the  problem  stems  directly  from  the  choice  of y, which, 

in  turn,  affects  the  convergence  factor a ,  since a < y/ 1 1  AA ( 1  . 
Third,  the a used  was  always  about  the  largest  value  per- 

%- 

T 
%% 

missible  in  order  to  keep  the  number  of  iterations  low.  However, 

we  saw  in  the  previous  section  that  by  decreasing  the  value  of a 

and  increasing  the  number  of  iterations,  we  could  have  improved 

the  accuracy. 

The  overall  accuracy  in  Fig.  3 is roughly  between  0.3  and 
0 0.4 C, except  at  the  tropopause  and  at  the  sur.<ace.  At  these  two 

levels,  there  is  less  agreement  between  the  dual  solutions,  appar- 

ently  due  to  the  usual  problem of obtaining  accurate  solutions 

there  by  any  method. 

V. EQUATIONS  OF  A MORE GENERAL  FORM 

A. The  Dual  Equations 

Details of the  principle of virtual  duality  were  worked  out 

in  the  previous  sections  for  the  Phillips-Twomey  inversion  method 
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as  an  outgrowth  of  the  duality  principle  for  the  least  squares 

solutions.  However,  we  need  not  stop  there.  The  principle  of 

virtual  duality  can  be  generalized  to  include  most  of  the  better 

known regularized  linear  inversion  methods. 

The  most  general of the  regularized  inverse  matrix  solutions 

.of Eq. (7) that  we  will  consider  has  the  form 

where V and W are  arbitrary  symmetric  positive-definite  matrices 

of  dimensions m x m and n x n,  respectively,  subject  to  the  con- 

straint 11 ,A$ - y 1 1  = 1 1  $ 1 1  . Hence , V and W have  inverses. 

% % 

% % 

The  iterative  dual  of  Eq. (29) is  of  the  form 

Tk = 5 k -  + ( y  - k - 1  1 

which  is  obtained  in  the  same  way  that  Eq. (11) was  derived  from 

Eq. ( 8 ) ,  except  that  the  identity,  in  Eq. (9) ,  must  be  replaced 

by  the  more  general  identity 

The  dual Eq. (30) converges  provided a < 2/11 V&J PJ ,A 1 1 .  As before, 

we  limit  the  number of iterations  to k = k-, where k is  such  that 

T -1 

u 

II %... Axk, - 1 1  1 1  5 1 1  . If  we  were  to  iterate  to  convergence,  we 
would  have 

which  is  the  weighted  least  squares  solution  with  weighting  matrix 

V. 
% 

Note  that  Eqs. (29)  and (30) are  simply  generalizations  of 

Eqs. ( 8 )  and (111, respecti.vely,  in  which  l/y$  has  been  replaced 

by . Consequently,  all  the  previous  discussion  relating 
to E q s .  (12) through (28) holds  for  the  more  general  situation 

in  which  1/y$  is  replaced  everywhere  by z$ ,W . In  particular, 

T 

T -1 

T T -1 
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the  key  substitution,  in  Eq.  (161,  is  replaced  by  the  substitution 

for (I& - aAVATWel) ‘, and  the  eigenvalue  analysis  is  applied  to 

AVATt” instead  of . Therefore,  the  eigenvalues A are  different, 
.vvL i 
as  is  the  definition  of z in  Eqs.  (20aj  and  (20b).  However,  none 

of  the  analyses  associated  with  Fig.  2  change.  Only  the  locations 

of the  circles  on  the  dashed  curve  in  Fig.  2  and  the  scale of the 

abscissa  must  be  altered.  Thus,  we  see  that  virtual  duality  holds 

between  Eqs.  (29)  and (30) as  well. 

V b %  % T 

We  are  now  ready  to  reap  the  benefits  of  all  our  work  to  this 

point.  Establishment of the  principle  of  virtual  duality  for  the 

general  Eqs.  (29)  and (30) permits  us  to  examine  the  various  linear 

inverse  matrix  and  iterative  inversion  methods  and  immediately 

write  down  their  respective  duals.  Furthermore,  knowledge  of  one 

of  the  duals  implies  immediate  knowledge  of  the  other  without  fur- 

ther  investigation. 

B. Special  Cases 

In  this  section,  we  look  at  the  more  familiar  linear  inver- 

sion  methods  in  the  context of the  duality  principle.  Included  in 

the  matrix  inverse  methods  are  those  by  Twomey  and  Phillips  (Refs. 

1 and 2) , Twomey  H-matrix  types  (Reps.  2  and 5) , Crone  (Ref. 6), 
and  Rodgers,  Strand  and  Westwater  (Refs. 1, 7, 8 and 9). Table 1 

indicates  the  particular  forms  that x and  have  for  the  special 
cases  just  cited.  (Note  that  the  identity,  in.Eq. (31), is 

required  to  reconcile  Table 1 with  the  expressions  in  the  original 

publications.) 

Since  the  methods  listed  in  Table 1 are  all  inverse.matrix 

methods,  their  iterative  duals  are  of  particular  ihterest..  For 

example,  the Rodgers-Strand-Westwater case  by  Eq. (30) becomes 
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Identif ication of Inverse  Matrix Methods 
i n  Terms of the V and W Matrices 

Method V W 

Twomey-Phillips  Im 
Twomey  H-matrix l/yH’l 
Crone VyIm 
Rodgers-Strand-Westwater’ 8 

2f 
is  the  profile  covariance  matrix,  and 

Q is  the  noise  covariance  matrix. 

which  is  a  form  that  apparently  has  never  appeared  in  the  literature. 
This  is  true  as  well of the  iterative  Twomey  H-matrix  and  itera- 

tive  Crone  methods. 

Among  the  iterative  methods,  we  have  those  by  Landweber  (Ref. 

10) , W. L.  Smith  (Refs. 1 and  111,  Conrath-Revah  (Ref.  12) , and 
Strand  (Ref. 10). These  are  summarized  in  Table  2  in  the  same 

format  as  Table 1. 

Of  particular  interest  are  the  inverse  matrix  duals  of  the 

iterative  methods  of  Table  2.  For  example,  by Eq. (29) and  the 

identity,  in Eq. (31),  the  Smith  and  Conrath-Revah  cases  can  be 

written  in  the  apparently  new  form 

which  is  a  Twoiney  H-matrix  type  solution  with  H  equal’  to  a  diag- 
% ’L 

onal  matrix. 

Listings  and  categorizations  similar  to  those  of  Tables 1 and 

2 could  be  made  for  square  inversion  systems,  such  as  the  linear- 

ized.Chahine  (Ref.  13),  Chiu  (Ref. 141, expansion  in  bases  func- 

tions  (Refs. 8, 9, and 15), and  empirical  orthogonal  functions 

(Ref. 4). However,  the  theory  and  duality  procedures  for  square 
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TABLE 2 

Ident i f icat ion of I tera t ive  Methods i n  
Terms of the V and W Matrices 

. - 
Method  V w 

Landweber Im  In 
W. L. Smith  (linearized) ' D- 1 In 
Conrath-Revah2 G- 1 In 
Strand (ATA + yImI-1  In 

. -~ " - - - 

. . - . . . . . .. . _ =  - - . . 

T 
-t 

2G = diag  (ATA1 ) m R 

systems  are  essentially  special  cases of the  rectangular  systems 

just  described;  therefore,  there  is  no  need  for  further  illus- 

tration. 

VI. THE INITIAL  APPROXIMATION 

A. Theory 

At  the  beginning of this  paper,  where  the  iterative  dual  of 

the  least  squares  solution  was  discussed  (Eq. (4)), we  saw  that  in 

the  limit,  as k -t Q), the  tent  containing  the  initial  approximation 

5 vanished.  This  is  a  case  in  which  the  solution  is  independent 

of the  initial  approximation.  Unfortunate1y;vthis  is  not  true  for 

\ 

0 

any  of  the  regularized  solutions  discussed  in  this  paper. 

To see  just  how  the  solutions  depend  upon th'e initial  approxi- 

mation,  let  represent  the  solution of any  of..,the  inversion 

methods  of  this  paper  when  no  initial  approximation  is  used,  that 

is,  when xo 9. Then,  Eq. (29) can  be  written 

I - VA  (AVA + W) %m % % ' -  

T  T -lA 1, x0 
and  Eq. (141, with  the  substitution  VATW-'  for  l/yA , can  be T 

' %  
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I 

written 

Application  of  the  identity - 
I - VA~(AVA~ + E) % 

-1 T -1 
A = (zm + VA W $1 

%m %% % 
(38) 

to Eq. (36) permits us  to write  it  in  a  form  similar  to Eq. (37) , 
namely 

Since  the  n x m  (n < m)  rectangular  matrix  has  rank n, the  rank 

of x$ $ is  also n.  Consequently, x$ $ # * zm, and  the  terms 
in Eqs .  (37) and (39) containing  the  factor  xo  cannot  vanish. 

Hence,  the  dependence  of  the  solutions,  in E q s . ( 3 7 )  and (39) on x 
is  a  permanent  and  significant  feature  of  regularized  solutions 

for  rectangular  systems.  This  is  the  price  one  must  pay  for 

stability. 

4 

T -1 T -1 

0 

If  the  matrix xe 8 ,$ is  diagonalized  by  the  m X m  orthogonal T -1 

matrix  P  then  the  matrices  in - E q s .  (37) and (39) also  can  be 

diagonalized  by P that is 
%I 

%' 

and 

The  functions of eigenvalues  in E q s .  (40a)  and (40b) are  again  of 

the form in E q s .  (20a) and  (20b),  respectively.  Thus,  not  only  do 

zko and $ of E q s .  (37 1 and (39) depend  on zo, they  depend on 5 in 

virtually  the  same  way.  This  result is certainly  not  unexpected, 

considering  the  origins  of Eqs .  (37) and (39). 

0 
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RMS  TEMPERATURE ERRORS, ".C 

F i g .  4 .  Profi les  of   the r m s  errors between the 139 radio- 

sondes and the Twomey-Phillips inverse  matrix  solutions when fore- 

casts (dashed curve) and climatology  (solid  curve)  are used a s  the 

in i t i a l   p ro f i l e s .  (1 b a r  = 100 kPa.)  
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B. Results 

Examples  of  the  dependence  of  the  solution  on  the  initial 

approximation  are  afforded  by  the  Twomey-Phillips  inverse  matrix 

solutions  as  shown  in  Fig. 4. As in  Fig. 1, the  curves  are rms 

differences  between 139 retrieved  temperaL1m-e  profiles  using  simu- 

lated  radiances,  and  the  corresponding  radiosonde  profiles  (used 

as  truth).  The  dashed  curve  in  Fig. 4 represents  the rms errors, 

at  the 15 mandatory  pressure  levels,  when  forecasts  are  used  for 

the  initial  profile,  while  the  solid  curve  represents  the  rms 

errors  when  climatology  is  used  for  the  initial  profile. 

As expected,  the  retrievals  based  on  the  forecasts  are  more 

accurate  than  those  based  on  climatology,  except  at 70, 100, and 

'150 mb. The  pattern  reversal  at  these  three  levels  is  due  to 23 

profiles  between 0 and 18ON that  have  much  better  climatological 

initial  profiles  than  forecast  initial  profiles  in  the  vicinity  of 

the  tropopause.  This  anomaly  occurred  because  the  numerical  fore- 

cast  model  applies  only  north  of 18O latitude.  Below  that  latitude 

a  single  average  initial  profile  'is  used  in  lieu  of  a  forecast, 

and this  profile  just  happens  to  be  worse  than  the  climatological 

one  in  the  tropical  tropopause  region. 

0 

VI1 . CONCLUDING REMARKS 

True  duality  exists  for  the  least  squares  solution,  but  the 

solution  is  unstable.  Therefore,  regularization  methods  must  be 

used  to  achieve  stability.  The  price  one  pays  for  this  stability 

is  the  dependence  of  the  solution  on  the  initial  approximation. 

Virtual  duality  has  been  established  for  a  very  general  class 

of  linear  regularized  solutions.  The  regular.ization  process  for 

the  iterative  solutions is accomplished  by  terminating  the  iter- 

ation  process  when  the  norm  of  the  residual  errors  is  equal  to  the 

norm  of  the  errors  in  the  radiances. 

351 



The  convergence  process  for  the  iterative  duals  can  be  demon- 

strated  graphically.  On  the  other  hand,  an  estimate  was  derived 

for  the  terminal  iteration  index  k  associated  with  any  given  con- 

vergence  €actor a. For  a  given  k  the  closeness  of  the  eigenvalues 

of  the  dual  solutions  can  be  determined  from  the  pertinent  equa- 

tions.  The  concept  of  "virtual  duality" is meaningful  because  by 

reducing  the  size  of a, the  eigenvalues  of  the  dual-  operators  can 

be  made  arbitrarily  close. 

0 

0 

Explicit  formulas  for  the  inverse  matrix  solutions  and  their 

iterative  duals  are  given  for  the  more comon of the  regularized 

linear  inversion  methods.  These  include  the  following  methods: 

Twomey-Phillips,  Twomey  H-matrix,  Crone,  Rodgers-Strand- 

Westwater,  Landweber,  W.  L.  Smith,  Conrath-Revah,  and  Strand. 

This  list  is  by  no  means  complete.  In  addition,  apparently  new, 

inversion  methods  have  arisen  as  duals  of  some  of  the  known 

methods. 

Finally,  the  whole  point  in  developing.the  principle  of  vi- 

tual  duality  is  that  knowledge  of  one  of  the  duals  immediately 

implies  knowledge  of  the  other.  Thus,  the  study  of  inversion 

methods  is  more  unified  through  the  link  of  duality. 

SMBOLS 

n .X m  matrix  of  weighting  functions  (Eqs. (1) and (7) ) 

arbitrary  square  matrix 

Euclidean  norm  of  square  matrix E 

diag(A  ln) w 

Twomey  H-matr  ix 

measwe of  closeness  of  eigenvalue  functions f and  h'for k 
arbitrary  k  (Eq.  (24)) 

k (1 - az) (Eq. (20a) 1 

(1 + z)-l{Eq.  (20b) 1 
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% 
I 

k 

kO 

% 
P 

R 

'Lf S 
'L 

2 E  
T 

t 

2 
x 

X - 
xo 
X 

k 

,. 
X 

ident i ty   mat r ix ;   subscr ip t  E, m and n denote,  the  dimension 

of the  square  matrix 

i te ra t ion   index  

te rmina l   i t e ra t ion   index  

m X m orthogonal m a t r i x  of  eigenvectors 

E S  

prof i le   covar iance   mat r ix  

noise  co.variance  matrix 

transpose of a matrix 

CtZ 

n x n orthogonal  matrix  of  eigenvectors 

a r b i t r a r y  m x m symmetrix pos i t i ve   de f in i t e   ma t r ix  

sf 

(Eqs .  (20)  and  (30)) 

a r b i t r a r y  n X n symmetric pos i t i ve   de f in i t e   ma t r ix  

(Eqs .  (29)  and  (30)) 

m-dimensional  source  function  vector ( E q s .  (1) and ( 7 ) )  

m-dimensional i n i t i a l  approximation  vector 

kth  successive  approximation  of  the  m-dimensional 

i t e r a t ive   so lu t ion   vec to r  (Eqs .  (3) , (11) , and (30 ) )  

m-dimensional inverse  matr ix   solut ion  vector  (Eqs .  ( 2 ) ,  

( 8 )  and  (29) 1 
m-dimensional solut ion  vector  when  no i n i t i a l   a p p r o x i -  

mation i s  used ( i . e .  , x = 0 )  ( E q s .  (36) , (371,  and (39 ) )  0 

n-dimensional  vector  of  measurements ( E q s .  (1) and ( 7 ) )  

eigenvalue 

scalar   convergence  ( re laxat ion)   factor  ( E q s .  (3) , (11) , 
and (30) )  

smoothing  (regularization) parameter ( E q s .  ( 8 )  and (11)) 

n-dimensional  error  vector (Eq. ( 7 ) )  

parameter ( 0  < 0 < 1) 

diagonal  matrix of eigenvalues X 

i t h   l a rges t   e igenva lue  

"vir tual ly   equal   to"  

i 
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DISCUSSIONS 

Staelin:  Have  you  considered  whether  you  can  convert  from  the 
virtual  duality  principle  to  a  true  duality  principle  by  altering 
the  way  the  matrix  is  regularized?  You  employed  a  constant  times 
the  identity  matrix. 

Fleming:  Yes. 

Staelin:  Suppose  one  regularized,  for  example,  by  using  different 
elements  on  the  diagonal.  In  other  words,  is  there  some  way  to 
make  it  a  true  duality  rather  than  only  a  virtual  duality? 

Fleming: I couldn't  find  any.  The  difficulty  is  this:  in  any 
iterative  scheme  when  you  telescope  together  the  various  iterates, 
you  always  end  up  with  a  matrix  that  is  raised  to  a  power.  Of 
course,  its  dual  always  involves  an  inverse  matrix.  I  just  don't 
see  any  way  in  which  a  power  matrix  can  ever  be  made  exactly  equal 
to  an  inverse  for  a  finite  number  of  iterations.  That  is  the  real 
heart  of  the  difficulty. 

Strand: I wanted  to  say  that I notice  the  version  that  you  con- 
sidered  is  a  scalar a, at  least  at  first. 

Fleming:  Yes. 

Strand:  And  this, I believe,  you  can  obtain  without  using  different 
alphas  by  dividing  both  sides  of  the  equation  by  suitable  factors 
in  the  first  place.  I was in  contact  with  Landweber  one  time  and 
he  told  me  that  I  could  get  the  effect of my  D  matrix  in  this  way. 
Well,  the  D  that  I  had  was  something  slightly  different  in  that 
my a was  a  matrix. So, instead  of  using  your  scalar  matrix,  one 
fudges  the  thing  part  way  by  getting  a  matrix  that  does  part  of  the 
job  and  then  iterates  with  that  for  the  rest  of  it.  I  would  be 
surprised  if  there  wasn't  the  same  kind  of  duality  for  that  situ- 
ation.  In  fact,  in  the  case  when  D  equals  Twomey's  matrix,  we  are 
able  to  find  a  very  close  known  relationship  between  the y that  you 
use,  say,  for  ten  iterations  and  the y used  for  one  iteration, 
which  is  essentially  Twomey's  process  to  start  with. So, although 
you  didn't  demonstrate  this,  I  would  certainly  think  that  the  same 
kind  of  duality  would  hold  for  a  more  general  assignment of what 
I  call  the  D  matrix. 

Fleming:  Yes,  intuitively  I  feel  it  is  true  for  the  linear  problem. 
That  might  be  another  way  to  approach  the  problem. 

Cerni:  You  said  that  your  solution  must  always  depend  on  the 
initial  guess,  and  there  exists  no  alternative.  Certainly  you  can 
entirely  replace;  if  you  choose,  the  constraint  to  an  initial 
guess  with  just  a  smoothing  constraint.  Then  there  will  be  no 
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initial  guess  dependence.  What  sort  of  results  do  you  get  with 
purely  a  smooth  constraint  in  the  inversion? 

F l e m i n g :  Getting  rid of the  initial  guess  is  equivalent  to  using 
a  zero  vector  in  the  x  vector.  You  can  smooth  all  you  like,  but 
the  larger  you  make  your  smoothing  parameter  in  any  of  these 
formulations,  the  closer  you  drive  the  solution  toward  the  initial 
approximation. So, if  you  started  with  a  zero  vector,  you  are  just 
going  to  force  the  answer  to  look  more  and  more  like  that  constant 
value,  which  is  certainly  smooth.  But  it  is  still  dependent  on 
the  initial  guess.  Do  you  disagree?  Did I answer  your  question? 

0 

C e r n i :  No, I mean  in  certain  instances  we  get  fine  results  with 
a  smoothing  constraint.alone  by  reducing  the  high  frequency  com- 
ponents  of  the  solution.  With  no  initial  guess,  we  get  a  very 
representative  solution. 

F l e m i n g :  I  don't  know  in  what  context  you  are  talking  about  this. 
First  of  all,  do  you  have  a  linear  problem? 

C e r n i :  Yes,  it  has  been  linearized. 

F l e m i n g :  Normally,  what  kind  of  vectors  are  you  looking  for?  Are 
you  looking  for  something  that  is  close  to  zero? 

C e r n i :  No. 

F l e m i n g :  The  chances  are  that  you  have  a  stable  system  and  then 
the  regularized  solutions  are  not  necessary.  Did  you  look  at  the 
conditioning  of  the  matrix  you  are  inverting?  If  it  is  well- 
conditioned you don't  need  a  regularization  method.  In  that  case, 
you  should  use  the  least  squares  solution.  We  saw  that  the  least 
squares  solution  is  independent  of  initial  approximation. So I 
think  what  we  are  saying  is  that  your  problem  is  in  a  different 
context  than  mine  is.  [Added  in  proof:  In  retrospect,  it  appears 
that  Dr.  Cerni  always  uses  the  same  first  guess  (the  implied  zero 
vector);  therefore,  the  question  of  the  dependence of the  solution 
on  the  initial  guess  is  not  gemane.] 

Herman: When  you  say  that  the  final  solution  is  dependent  on  the 
initial  guess,  what  degree  of  dependence  do  you  mean? I will  be 
showing  this  afternoon,  and  earlier  in  the  week,  some of the 
Arizona  group  have  also  shown  that  inversions  of  real  data  starting 
with  widely  varying  first  guesses  almost  overlap  each  other.  Now 
this  was  done  using  an H matrix  and  not  the  other  technique  you 
were  talking  about,  which  you  said  does  not  fit  in  this  category, 
but,  nevertheless,  it  is  relatively  insensitive  to  the  initial 
guess  and  is  an  ill-conditioned  matrix. 
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Fleming:  I am simply  saying  that  the  better  the  initial  approxi- 
mation,  the  better  reliance  you  can  have  on  the  solution,  resulting 
in  narrower  error  bars  around  your  solution. I am not  saying  it 
is  dependent  in  a  particular  way; I am saying  there  is  a  strong 
dependence  which  differs.with  each  different  kind  of  initial 
approximation  and  with  each  different  method  of  solution. 

Rodgers :  One  would  hope  that  the  solution  would  depend on the 
initial  guess  because  the  initial  guess  is  a  virtual  measurement 
and  the  solution  also  depends  on  the  measurements.  That  wasn't 
what I really  wanted  to  ask.  I  feel  sure  that  some  kind  of  linear 
transformation can turn  the  more  general  linear  method  (where  you 
have  two  covariance  matrices)  into  a  form  with  a  dual  by  suitable 
eigenvector  transformation. 

Fleming:  I  feel  it  can,  but  I  just  don't  know  how. 

Rodgers :  . Well,  you  can  transform  the  covariance  matrix  to  a 
diagonal  form  or  a  unit  form. 

Fleming:  Yes,  but  even  if  they  are  diagonal,  they  don't  commute. 
You  can'  t  move  the  diagonal  from  one  side  of  the  matrix  to  the 
other  side.  This  is  where  the  whole  thing  broke  down  on  me. 

Rodgers :  You  can  turn  a  covariance  matrix  into  a  unit  matrix  by 
a  suitable  scale  transformation  and  rotation.  That's  what  you 
need,  isn't  it? 

Fleming:  But  then  will  it  be  the  same  matrix?  Will  it  hold  for 
ATA  as  well  as  the  transformed  matrix? 

Rodgers :  Well,  it  will  give  you  a  different A. If  you  apply  a 
suitable  transformation  to X, such  that  what  is  equivalent  to  the 
covariance  of X turns  into  unit  matrix,  then  A  is  going  to  change 
to  something  else.  And  then I think  you  end  up  with  a  form  that 
has  a  dual. 

Fleming:  If  you  can  do  that,  my  theory  applies  and  one  has 
duality.  [Added  in  proof:  In  the  final  text  of  the  paper,  this 
difficulty  has  been  overcome,  and  the  virtual  duality  principle 
is  shown  to  hold  for  all  of  the  better  known  linear  inversion 
methods. ] 

T w i t t y :  This  is  just  a  comment.  You  told  Dr.  Cerni  that  it 
sounded  like  his  solution  might  fall  in  the  category  of  having  a 
stable  solution,  because  the  inverse  of  the  matrix  really  exists. 
In  most  of  the  cases  we  have,  that  is  not  true.  We  have  an 
unstable  matrix.  There  must  be  something  that  goes.continuously 
from  the  case  where  you  have  to  regularize  it  and  where  you  don't. 
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There  must  be  some  measure,  or  scale,  in  this  analysis  that  could 
measure  how  stable  a  situation  you  have. 

Fleming:  Yes, and  that is usually  the  so-called  P-condition  number 
of A, which  is  the  ratio  of  the  largest  to  the  smallest  eigenvalue 
of ATA. That  is  one  way of looking  at  it,  if  you  want  to do an 
eigenvalue  analysis  on  the  matrix. 

T w i t t y :  Yes,  but  perhaps  a  measure  that  would  relate  to  something 
more  physical,  because  we  are  talking  about  whether  we  have  virtual 
data  or  not  virtual  data  in  the  solution. 

Fleming:  One  quick  thing  that  can  be  done  is  to  solve  the  problem 
in  the  best  way  you  know.  Then  perturb  the  input  vector  of 
measured  quantities  in  a  systematic  and  realistic  way  and  solve  the 
problem  again.  If  the  new  solution  differs  from  the  original 
solution  in  a  proportionate  and  physically  acceptable wayI the 
problem  is  well-conditioned.  Otherwise,  some  kind  of  regularization 
and/or  additional  virtual  data  are  needed. 

T w i t t y :  Yes,  I  understand  you  can  take  a  specific  problem  like 
that  and  determine  the  regime  you  are  in. You seem  to  have  been 
attacking  the  problem  for  getting  more  physical  insight  into  things. 

W e s t w a t e r :  You  mentioned  that  the  duality  did  not  exist  when  you 
considered  the  second  or  first  derivative  constraint.  Have  you 
used  this  type  of  constraint  in  temperature  retrievals?  And  if 
you  have,  how  does  that  compare  with  the  standard  Twomey  minimi- 
zation  around  an  initial  guess? 

Fleming:  They  are  generally  very  close.  The  nice  thing  about  the 
smoothing  techniques  is  that  the  answer  is  relatively  insensitive 
to  the  kind  of  smoother  you  use.  The  type  of  constraint  used  is 
critical  only  in  those  regions  where  the  weighting  functions  are 
close  to  zero.  Let  me  give  you  an  example.  We  were  looking  at 
some  stratospheric  sounding  problems  at  one  time  which  involved 
'the  so-called  "sudden  warming."  If  you  use  a  sounder  such  as  the 
VTPR for  which  most  of  the  weighting  functions  peak  the  tropo- 
sphere,  there  is  little  information  about  the  stratosphere. So if 
you  have  a  sudden  warming.situation,  the  radiances  corresponding 
to  the  stratosphere  increase  drastically.  Consequently,  when  you 
retrieve  a  temperature  profile,  all  that  excess  energy  is  dumped 
into  the  lower  part  of  the  atmosphere  where  the  weighting  functions 
peak,  and  you  lose  all  the  information  on  the  stratospheric  warming. 
After  experimenting  with  the  various  kinds  of  smoothers,  we  found 
that  we  could  restore  the  sudden  warming  portion  of  the  temperature 
profile,  which  is  above  the  weighting  function  peaks  by  using  the 
right  kind  of  smoother.  In  other  words,  the  smoothing  constraints 
provide  the  information  where  the  weighting  functions  trail of€ to 
zero,but  have  little  effect  on  the  rest  of  the  solution.  This  is 
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completely i n  the ve in  of Clive  Rodgers' talk. You have t o  know 
a priori  the   k ind  of information you are working  with and use it 
i n   t h e   c o r r e c t  way.. A l l  t h i s  i s  as much an a r t  as it is a 
science. 

Twomey: Henry, I neverthought   I 'd   hear  you say   tha t !  
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INVERSION OF PASSIVE  MICROWAVE  REMOTE 

SENSING  DATA  FROM  SATELLITES 

David H. Staelin 
M a s s a c h u s e t t s   I n s t i t u t e  o f  Technology  

G l o b a l   p a s s i v e   m i c r o w a v e   o b s e r v a t i o n s  from Ear th -  
o r b i t i n g   s a t e l l i t e s   h a v e  mapped h u m i d i t y   a n d   l i q u i d   w a t e r  
over o c e a n ,   t e m p e r a t u r e   p r o f i l e s ,  ice  and snow, and other 
g e o p h y s i c a l   p a r a m e t e r s .   F u t u r e   s a t e l l i t e s  w i l l  extend the 
a l t i t u d e   r a n g e   a b o v e  100 k m  and w i l l  expand the l i s t  o f  
t r a c e   c o n s t i t u e n t s   t h a t   c a n  be mon i tored .  

q u a t e l y   a p p r o x i m a t e d   a s   l i n e a r  w i t h  j o i n t l y   G a u s s i a n   s t a -  
t i s t ics ,  a n d ,   t h u s ,  a l i n e a r   r e t r i e v a l   p e r f o r m s  w e l l .  In 
some c a s e s ,  the prob lem i s  t y p i c a l l y   f a c t o r e d  i n to  a 
decision p r o c e s s   f o l l o w e d  b y  a p p r o p r i a t e   l i n e a r  or q u a s i -  
l i n e a r   p r o c e s s e s .   C e r t a i n   p r o b l e m s ,  however, r e q u i r e  more 
p o w e r f u l   n o n l i n e a r  or n o n s t a t i o n a r y   p r o c e d u r e s ,   s u c h   a s  
Kalman f i l t e r i n g .  

In most a p p l i c a t i o n s ,  the inversion prob lem i s  ade-  

I.  INTRODUCTION 

Passive  microwave  sensing  techniques  are  employed in geo- 

physics,  radioastronomy,  biomedical  and  other  areas.  The  special 

value  of  these  techniques  results  primarily  from  the  facts  that 

1. microwave  receivers  can  sense  thermal  radiation  with  one- 

second  sensitivities  as  high  as 10-2K. 

2. microwave  radiation  penetrates  most  matter  much  more 

readily  than  does  infrared  radiation,  which  is  the  usual  alterna- 

tive  technology;  and 

3.  many  gases  have  microwave  resonances  which  can  readily  be 

resolved,  and  which  permit  observation  even  in  some  cases  where 
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other  spectral  regions  are  inadequate.  Geophysical  applications 

have  been  reviewed  by  Staelin  (Ref. 11, Tomiyasu  (Ref. 21, Waters 

(Ref. 3) , and  others. 

One  important  property  of  microwave  thermal  radiation  results 

because  hv << kT for  .most  cases  of  interest  (where h is  Planck's 

constant, v is  frequency, k is Boltmann's  constant,  and T is 
temperature).  For  example,  if T 1 100 K, then V must  be  much  less 
than 2000 GHz (2 x lo1 Hz) . This  constraint  is  usually  met,  and 
then  Planck's  radiation  law  passes  to  the  Rayleigh-Jeans  limit, 

where  thermal  radiation  intensity I is 

( A  is  wavelength)  and  the  power  in a single-mode  transmission  line 

is 

P = kT (W Hz-') 

The  linear  relation  between  temperature  and  power  generally 

results  in  more  nearly  linear  retrieval  problems  when  data  are  to 

be  interpreted. 

It also  follows  that  the  responsiveness (AP/AT) of  receivers 

is  not  degraded  for  low-temperature  sources.  Receiver  sensitivities 

(K)  typically  depend on radio-frequency  bandwidth B (Hz), 
AT?JllS 
integration  time T (sec),  receiver  noise  temperature T ( K ) ,  and 

the  antenna  or  source  temperature T (K),  as  follows: 
R 

A 

The  source  temperature,  viewed  from a terrestrial  satellite,  might 

be %250 K, and T (below 200 GHz) could  range  from 10 to 5,000 K, 

with 1000 K being  typical. B might  range  from  lo6  to  lo9 Hz, with 

lo8  being  typical;  therefore, ATrms for  1-sec  averaging  might  be 

0.01-10 K, with 0.24 being  typical.  Note  that  the  receiver  sensi- 

tivity  actually  improves  for  colder  targets.  Receiver  and  antenna 

R 
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technology  for  remote  sensing  is  similar  to  that  for  radioastron- 

omy,  which  has  been  reviewed  by  Kraus  (Ref. 4 ) ,  and  others. 

The  equation of radiative  transfer  appropriate  for  microwaves 

(lo8 - 10l2 Hz)  in  the  terrestrial  atmosphere is usually  approxi- 

mated  as  that  for a slightly  lossy  medium  in  local theme- 

dynamic  equilibrium.  Scattering  from  tropospheric  inhomogeneities. 

is  very  weak  and,  like  refractive  and  ionospheric  effects,  is 

usually  neglected  for  passive  microwave  remote  sensing  purposes. 

Exceptions  occur  primarily  for 

1. tropospheric  rays  parallel (+ = 1  ) to  the  geoid,  when 0 

refractive  effects  become  important;  and 

2. scattering  from  cloud  droplets,  which  becomes  important 

only  when x 'L x, where n and d are  the  refractive  index  and 
diameter  of  the  drops,  respectively. 

Below 60 GHz,  this  situation  is  important  primarily  for  heavy  pre- 

cipitation.  Even  then  the  absorption  of  those  same  clouds  can 

overwhelm  the  scattering  effects,  which  generally  remain a modest 

perturbat2on  in  computations  of  cloud  brightness  temperatures. 

Microwave  scattering  from  clouds  has  been  discsused  in  many  places, 

such  as  Refs. 5 and 6. Scattering,is  most  often  discussed  in  the 

context  of  radar,  because  then  even a weak  scattered  signal  from 

a cloud  is  essentially  the  only  signal. 

The  usual  simplicity  of  microwave  radiative  transfer  also 

simplifies  data  interpretation.  The  equation  of  radiation  trans- 

fer  can  usually  be  approximated as 

-2T0 - - TO 
TB - RTskye + (1 - R)  Tsurfe 
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where T is  the  brightness  temperature  viewed  from a satellite. 

R is  distance  along a ray  emitted  upward  from  the  terrestrial  sur- 
face,  and R' is  distance  along a ray  incident  upon  the  surface; 

B 

= R' =' 0 refers tG the  surface,  and 8 = 00 refers  to  some  point 

above  the  atmosphere. R is  the  surface  reflectivity, T and 

Tsurf are  the  brightness  and  kinetic  temperatures  of  space  and 

the  terrestrial  surface,  respectively. a(E) is  the  atmospheric 

absorption  coefficient  and T~ is the  integral  of a along R from 
0 to 03. 

sky 

The  equation  of  radiative  transfer  is  thus  generally  domi- 

nated  by  atmospheric  absorption,  thermal  emission  processes,  and 

surface  reflection  characteristics.  Surface  characteristics  vary 

considerably,  some  surfaces  being  largely  specular,  such  as  the 

ocean  (Ref. 7), and  some  scattering  or  absorbing  strongly,  such 

as snow  or  ice  (Ref. 8) or forested  land  (Ref. 9). The  surface 

reflectivity  of  the  ocean  or  fresh  water'  might  be -0.4 to 0 -6, 

whereas  that  of  ice  and  snow  might  be ~0.7 to 1.0, and  that  of 

land  might  be ~ 0 . 8  to 1.0. 

The  dominant  microwave  absorbers  in  the  atmosphere  are H 0,  
2 

02, 03, clouds,  and  precipitation.  Figure 1, prepared  by 

P.  W.  Rosenkranz ,l illustrates  the  typical  opacity  of  the  ter- 

restrial  atmosphere  due  to  water  vapor,  oxygen,  and  clouds.  Many 

typical  trace  constituents  also  have  weak  but  quite  observable 

spectra.  The  microwave  spectral  properties  of  the  atmosphere  have 

been  reviewed  by  Staelin  (Ref. l), Waters  (Ref.  31,  Rosenkranz 

(Ref.  lo),  Liebe  (Ref.  ll),  and  others.  With  the  recently  avail- 

able  sensitive  receivers  in  the  100-300  GHz  region,  many  addi- 

tional  microwave  spectral  lines  are  being  detected  in  the  atmos- 

phere  for  the  first  time,  such  as  those  of 0 and CO near 100- 

200 GHz. 
3 

Below  altitudes  of ~ 7 5  km pressure  broaderning  dominates  the 

width  of  most  microwave  molecular  resonances and, thus,  provides 

a means  for  determining  the  pressure  altitude  at  which 
.. 

'personal  communication. 
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Standard  Atmosphere  and for 2 cm o f  p r e c i p i t a b l e   w a t e r   v a p o r  d i s -  

t r i b u t e d   e x p o n e n t i a l l y   w i t h  2 k m  s c a l e   h e i g h t .  The e f f ec t s  of a 

2-km thick s t r a t u s   c l o u d   a r e   a l s o  shown. Typ ica l   measuremen t s  for 

0 a l o n e   a n d  0 p l u s  H 0 a r e   i n d i c a t e d   b y   a s t e r i s k s .   ( F i g u r e  2 2  2 
s u p p l i e d   b y   R o s e n k r a n z . )  

contributions  to  an  observed  spectral  line  originated.  Typical 

microwave  receivers  achieve  adequate  sensitivities  with  band- 

widths  of  z1-100 MHz, which  are  generally  much  less  than  the 

observed  linewidths  of 2-2000 MHz. This  ability  to  measure 

easily  the  precise  shapes  of  most  spectral  lines  contrasts  with 

the  situation  for  most  infrared  detectors,  which  typically  observe 

broad  bands  that  overlap  many  resonances.  Even  gaseous  selective 

absorption  infrared  filters  only  partially  limit  this  smoothing 

of  spectra  and  consequent  degradation  of  altitude  information. 

The  altitude  dependence  of  microwave  emission  differs  in 

another  way  from  that  of  infrared  sensors.  The  linear  relation 

between  temperature  and  radiated  microwave  power  differs  from  the 

strongly nonlinear  temperature  dependence  of  the  Planck  function 
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in  the  thermal  infrared.  This  results  in  altitude  sensitivities 

of  microwave  spectra  that  are  only  modestly  dependent  on  atmos- 

pheric  temperature  profiles,  whereas  these  temperatures  can  have a 

profound  effect  on  spectra  in  the  thermal  infrared. 

11.  SOUNDING OF ATMOSPHERIC  TEMPERATURE  PROFILES 

Two basic  geometries  are  appropriate  for  satellite  sensing'of 

atmospheric  temperature  profiles:  the  "nadir  mode"  wherein  the 

satellite  sensor  views  the  atmosphere  at  any  desired  angle  such 

that  the  ray  intercepts  the  terrestrial  surface,  and  the  "limb- 

scanning  mode"  for  which  the  ray  does  not  intercept  the  earth  but 

passes  through  the  atmosphere  at  the  limb  of  the  planet.  Only 

nadir-mode  microwave  systems  have  been  built  to  date. 

At  present  only  two  satellites  carry  Dassive  microwave 

sounders  for  temperature  profile  measurement:  Nimbus-5  carries 

Nimbus E Microwave  Spectrometer  (NEMS),  launched  December 12, 1972 

(Ref.  12);  and  Nimbus-6  carries  Scanning  Microwave  Spectrometer 

(SCAMS),  launched  June  11,  1975  (Ref. 13). They  each  have  two 

channels  near  1-cm  wavelength  for  observing  the  surface  and  atmos- 

pheric  water,  and  three  channels  near 0.6-cm wavelength  which  are 

on  the  opaque  wings  of  the  0.5-cm  oxygen  absorption  complex;  they 

measure  thermal  radiation  originating  from  different  atmospheric 

levels (0-18 h) 

Temperature  profiles  may  be  determined  because  each  channel 

T (v)  responds  differently  to  the  temperature  profile T ( a )  as 
characterized  by  standard  weighting  functions W(v,a) :  

B 

The  microwave  temperature  weighting  functions  presented  in  the 

literature  to  date  are  formed  by  simply  factoring T(E) from  the 
appropriate  terms  of  Eq. (4) to  produce  Eq. (5). Typical  weighting 

functions  are  presented  in  Fig. 2. In  fact,  more  meaningful 
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f u n c t i o n s   f o r   f r e q u e n c i e s   n e a r  the 60-GHz oxygen   band.  A n a d i r -  

v i e w i n g   s a t e l l i t e  i s  assumed.  A c o n t i n u o u s   d i s t r i b u t i o n  of s u c h  

w e i g h t i n g   f u n c t i o n s   c a n  be o b t a i n e d  between 0 and 75 km. 

weighting  functions  could  be  found  that  are  less  temperature 

dependent.  If  one  expands  the  integrand  of Eq. ( 5 )  in a Taylor 

series  about a presumed  temperature  prdfile  and  keeps  only  the 

first  order  teim  T(R)W'(v,R)  in  the  integral,  then  the  resulting 

temperature  weighting  function W'(v,R) is  usually  not  greatly  dif- 

ferent  from  the  customarily  presented  W(v,R)  because  of  the 

linearity  of  the  microwave  spectrum. 

These  weighting  functions  are  very  similar  to  those  in  the 

infrared  region.  The  microwave  functions  are  generally  broader 

in  the  lower  troposphere  where  the  lapse  rate  is  significant  and 

367 



the  Planck  function,  therefore,  sharpens  the  infrared  temperature 

weighting  functions  based  on  the CO bands  near  15I.lm  and  especially 

4.3  vm.  Near  the  tropopause  and  in  the  lower  stratosphere,  how- 

ever,  the  Planck  function  severely  broadens  the  infrared  functions, 

and  the  low  spectral  resolution  of  present  infrared  sounders 

broadens  them  further  at  still  higher  altitudes. 

2 

The  different  behavior  of  the  microwave  and  infrared  weighting 

functions  suggests  optimum  satellite  systems  will  incorporate  both 

spectral  regions,  e.g.,  the  narrow  4.3  pm  weighting  functions  for 

the 0-8 km region,  and  the  narrower  microwave  functions  for  alti- 

tudes  above -8 km. One  present  compensating  virtue  of  broadband 

infrared  sensors  is  that  their  greater  sensitivities  permit  shorter 

integration  times,  and,  therefore,  they  can  yield  higher  spatial 

resolution.  Thus,  there  can  be  complex  system  design  trade-offs 

between  the  ranges  of  vertical,  horizontal,  and  temperature  reso- 

lution  that  various  microwave  and  infrared  sensors  can  provide. 

A second  important  property  of  microwave  temperature  sounders 

is  their  ability  to  penetrate  all  cirrus  clouds  and  almost  all  non- 

precipitating  clouds. A study  of  the  degradation of NEMS tempera- 

ture  retrievals  by  clouds  ('Ref. 14) shows  that  only  intense  pre- 

cipitation  bands,  subh  as  the  Inter-Tropical  Convergence  Ozone 

(ITCZ)  or  major  extratropical  storms,  have  any  measurable  effect 

on  temperature  retrievals.  This  effect  arises  from  perturbations 

in  the  brightness  temperature  of -5 to + 2  K for  channels 

sensing -3-8 km altitude.  These  effects  are  normally  negligible 

because  most  heavy  clouds  have  temperatures  close  to  those  of  the 

observed  brightness  temperatures,  and  because  most  heavy  clouds 

do  not  fill  the  entire "30O-km viewing  zone  of NEMS. Approximately 

0.4% of NEMS observations  for  the  4-km  weighting  function  were 

perturbed  more  than 1 K, and  these  were  primarily  over  the  ITCZ 

(Ref. 14) . 
Because  the  radiative  transfer  problem  in  the  opaque 0 bands 2 

is  nearly  linear  in  temperature,  and  since  the  temperature 



var ia t ions  are near ly  a jointly  Gaussian  process,  a . l i nea r   l ea s t -  

square-error   re t r ieval   process   for   temperature   prof i les  is  near ly  

optimum; conventional  linear  regression  procedures  can  be  used. 

Analyses  of  the  accuracy  of  such  temperature  retrievals  for NEMS 

were performed by Waters, e t   a l .  (Ref.  15) and Wilcox  and  Sanders 

(Ref.   16).   Typical  accuracies  are  presented  in  Fig.  3 (From Ref. 

15) . 
The repor ted   inaccurac ies   in   the   re t r ieva ls   a r i se  from 

(1) receiver  noise and ca l ibra t ion   e r rors ,   ampl i f ied  by the 

re t r ieva l   p rocess ;  (2)  e r r o r s  i n  the presumed  atmospheric  propa- 

ga t ion   charac te r i s t ics ;  ( 3 )  r e t r i e v a l   e r r o r s   r e s u l t i n g  from the  

inability  of  coarse  weighting  functions  to  respond  to  fine  struc- 

tu re  i n  the   t rue   t eqpera ture   p rof i les ,  which i s  most  pronounced 

near  the  surface and the  tropopause; and (4) e r ro r s  i n  the com- 

parison  sources,   which  are  typically  single o r  smoothed s e t s  of 

radiosondes.  Receiver  noise  for NEMS was =0.15 K per  sounding. 

Cal ibrat ion  errors   are   bel ieved  to   be  less   than 2 K and e s s e n t i a l l y  

constant ;   therefore ,   they  contr ibute   pr imari ly   to  mean r e t r i e v a l  

e r ro r s  of =, f 2 K,  b u t   v e r y   l i t t l e   t o  root-mean-square (rms) e r r o r s  

about  the mean. Errors  i n  the  propagation  equations  are  believed 

to  be  small  and to  produce  systematic  errors  largely  indistinguish- 

able  from ca l ib ra t ion   e r ro r s .  Most of   the   in fer red   re t r ieva l  

e r rors   a re   be l ieved   to   resu l t  from coarse  weighting  functions and 

radiosonde  errors.   Evidence  for  this  hypothesis  follows from com- 

parison of the rms and mean e r r o r s  between the  observed T values 

,and  those computed theo re t i ca l ly   fo r   i n t e rpo la t ions  of the  corre-  
B 

sponding OR and 12’ National  Meteorological  Center (NMC) tempera- 

t u re   f i e ld   ana lyses ;   t hese  rms errors   about   the mean regression 

l i n e   a r e  -1.1 K, 0.7 K, and 0.7 K for  channels  peaking  near 4 km, 
11 km, and 18 km, respect ively.  Removing the  “-0.15 K contr ibut ion 

of  receiver  noise  implies nns NMC e r r o r s  of  only “0.7 K, which i s  

not  implausible,  even i f   a l l  propagation and ca l ib ra t ion   e r ro r s  

were zero. 
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coincident Radiosonde O b s e r v a t i o n s  (RAOB’s) , ( 3 )  a s t a t i s t i c a l l y  

mode led   po in t - t empera ture  sensor and a h y p o t h e t i c a l   a r e a  sensor 

s a m p l i n g  s 4  X l o 4  km2 for s t a t i s t i c s   a b o v e  54 N l a t i t u d e ,   a n d  

(4 )  the g e o m e t r i c   s u m  of (1)  and ( 3 ) .  (1 b a r  = 100 kPa-1 

The  data  of  Fig. 3 reveals  that  much  more  error  was  deduced 

when  comparisons  were  made  with  individual  radiosondes  instead of 

the  NMC  grid.  There  are  two  hypotheses  to  explain  this  difference. 

The  first  explanation is  that  the  excessive  errors  for  radiosondes. 

are  due  to  aliasing  errors;  the  large  area  averaged  by  NEMS  is 

better  represented  by  the  NMC  analyses,  which  are  derived  by 

averaging  nearby  radiosondes.  This  hypothesis  has  been  tested  by 

Ledsham,  who  computed  the  auto-correlation  functions of the 2 

2personal  communication. 
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atmospheric  temperature field’at several  altitudes  and  latitudes, 

and  then  predicted  the  aliasing  errors  that  could  be  expected. 

These  errors  are  plotted  in  Fig. 3 as  the  area-point-sensor  error. 

This  result  is  consistent  with  the  observed rms discrepancies 

between  the NMC analyses  and  individual  radiosondes,  and  consistent 

with  the  discrepancies  between  the NEMS comparisons  with NMC 

analyses  and  radiosondes,  all  shown  in  Fig. 3 .  

The  second  hypothesis  (Ref.  17)  is  that  the  radiosondes  are 

more  representative  than  the NMC analyses,  which  smooth  the  fine 

vertical  structure  in  the  comparison  profiles  and,  thus,  yield 

artificially  smaller rms errors.  If  this  second  hypothesis  is 

correct,  then  there  may  be  an  unidentified  extra  source  of  error. 

Although  this  appears  unlikely,  a  more  definitive  study  remains 

to  be  done. 

SCAMS  is  similar  to NEMS but  scans  left  to  right  in 13 1-sec 

steps  with  7.5  beamwidths.  This  yields  maps  of  temperature  pro- 

files ~2500 km wide  and  with  “150-300 km resolution.  Examples 

are  shown  in  Fig. 4. 

0 

The  60-GHz  band  of  oxygen  is  not  the  only  opaque  region  that 

can  be  used  for  temperature  sounding;  the  isolated  118.75  GHz 

resonance  of 0 is  even  more  opaque  than  the  60-GHz  complex. 

Although  cloud  effects  can  be  perhaps  twice  as  great  near  118  GHz, 

the  effects  are  still  important  primarily  in  the  ITCZ  and  large 

extratropical  storms.  The  weighting  functions  are  slightly 

broader  at 118 GHz  than  near 60 GHz,  and  can  reach  to  altitudes 

near 80 km at  the  very  center of the  resonance. 

2 

Limb-scanning  observations  of  the  atmospheric  temperature 

profile  require  large  antennas  in  order  to  obtain  useful  angular 

resolution.  The  excellent  altitude  resolution  €or  limb-scanning 

systems  arises  because  the  majority  of  the  emission  originates 

within =2 km of  the  ray  tangent  height  if  the  atmosphere  is  not 

opaque.  If  the  satellite  is 1000 km from  the  tangent  point  for  a 
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F i g .  4 .  R e p r e s e n t a t i v e   m a p s   p r o d u c e d   b y  SCAMS, on 3 and 5 

February  1976 * i n d i c a t e s  5 February   da ta  . ( A )  l a t i t u d e  and 

l o n g i t u d e   a t   n a d i r   ( i m a g e  center), ( B )  b r i g h t n e s s   t e m p e r a t u r e   a t  

31.6 GHz ( b l a c k  i s  hot; note l a n d   m a s s e s ) ,  (C) retrieved w a t e r  

v a p o r   o v e r o c e a n   ( b l a c k  i s  h u m i d ) ,  (D) retrieved l i q u i d   w a t e r  over 

o c e a n   ( b l a c k  i s  h e a v y   c l o u d s  or p r e c i p i t a t i o n ) ,  ( E )  retrieved 

a v e r a g e   a i r   t e m p e r a t u r e s  "K" 1000-500 mb (note uncompensated 

e f f ec t s  o f  h i g h   e l e v a t i o n   l a n d  over A n t a r c t i c a ) ;   c o n t o u r s   a r e   e a c h  

2 K  w i d e ,  ( F )  a v e r a g e   t e m p e r a t u r e  500-250 mb, and (GI average  

t e m p e r a t u r e  250-100 mb. 

given  ray,  then an antenna beamwidth of 3 7  arc  minutes i s  required 

to   achieve 2-km ver t i ca l   r e so lu t ion .  This  requi res  an  antenna 

= 3  m 'long i n  t h e   v e r t i c a l   d i r e c t i o n   a t  60 GHz,  o r  "1.5 m a t  118 

GHz.  These  dimensions  are wi th in  the   capab i l i t y  of the  space 

s h u t t l e  and  modern antennas. 

The techniques  one  can employ a t  microwave frequencies  (Ref. 

18)  are  again  analogous  to  those  available i n  the  infrared  (Ref.  

1 9 ) .  Weighting  functions  available  near 125 GHz a r e   i l l u s t r a t e d  
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in  Fig. 5, and  brightness  temperatures as a function  of  tangent 

height  are  illustrated  in  Fig. 6 for  two  different  model  atmos- 

pheres. 

One  of  the  problems  in  limb-scanning  is  determination  of  the 

absolute  pressure  altitude of the  scan.  Accuracies  better  than 

a 2 0 0  m are  desirable.  Note  that  the  warmer  atmosphere  in  Fig. 6 

appears  hotter  at  those  view  angles  (or  tangent  heights)  corre- 

sponding  to  greater  optical  depths  and  appears  cooler  at  others. 

This  effect  arises  because  the  hotter  gas  is  more  nearly  trans- 

parent  and  actually  emits  less  per  meter  of  path  length.  For  each 

observing  frequency  there  is a "neutral  point," a view  angle  or 

ray-tangent  pressure  for  which  the  brightness  is  largely  indepen- 

dent  of  the  atmospheric  temperature  profile.  Thus,  this  constant 

pressure  altitude  can  conceptually  be  located  by  determining  the 

view  angle  which  exhibits  the  known  neutral-point  brightness 

temperature;  in  practice,a  more  mathematical  estimation  procedure 

would  be  used. 

Figure 6 suggests  that  the  brightness  temperature  varies 

about 0.2 K in 10 meters, so a radiometer  sensitivity  of 0.2 K can 

enable  the  reference  pressure  altitude  to  be  inferred  with  an 

accuracy  several  times  worse  than  this,  say 5 0  meters,  which  is 

more  than  adequate.  Corrections  must  also  be  made  for  refractive 

effects  and  the  effects  of  trace  constituents;  these  also  intro- 

duce  errors  of  varying  significance. A variety  of  standard  linear 

and  nonlinear  retrieval  procedures  can  be  adapted  to  this  problem. 

There  are  two  other  independent  ways  to  determine  atmospheric 

temperatures  from  limb-scanning  spectra.  Above  those  altitudes 

where  pressure  broadening  dominates,  i.e.,  above 160 km, Doppler 
broadening  becomes  important.  Measurements  of  Doppler  width  can 

yield  estimates  of  the  translational  temperature  of  the  oxygen. 

The  second  technique  has  long  been  used  for  optical  spectra;  the 

relative  populations  of a series  of  energy  levels is determined, 

and  these  yield,  in  the  case  of 0 2 ,  a rotational  temperature. 

373 



'1 

0 
N 

F i g .  5. Limb-scan-mode   t empera ture   we igh t ing   f unc t ions  

o b t a i n e d   n e a r  118.75 GHz for a r a y   t a n g e n t   a t  12-km a l t i t u d e .  The 

p e a k s   a t  12  k m   a r e   t r u n c a t e d .  These f u n c t i o n s   c a n  be t r a n s l a t e d  

c o n t i n u o u s l y  i n  a l t i t u d e   b y   s c a n n i n g  the limb. 

These  techniques  have  not  yet  been  employed  for  atmospheric 

probing,  but  have  been  proposed  for  a  limb-scanning  experiment  on 

the  space  shuttle. 

Several  avenues  for  improvement  of  microwave  retrievals  exist. 

The  present  linear  and  quasilinear  techniques  are  nearly  optimum 

for  single  position  retrievals,  but SCAMS and  future  temperature 

sounders  will  generally  map  the  temperature  field  in  three  dimen- 

sions.  Some  appropriate  smoothing  could  be  employed  to  improve 
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7 MODEL  ATMOSPHERE + 30 K 

MODEL ATMOSPHERE 
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F i g .  5 .  P r e d i c t e d  limb b r i g h t n e s s   t e m p e r a t u r e s   n e a r  118.75 

GHz a s  a f u n c t i o n  o f  r a y   t a n g e n t   h e i g h t  f o r  t w o  model  a tmospheres :  

the U. S .  Standard  Atmosphere  and one u n i f o r m l y  30 K warmer. 

Refractive e f f e c t s  were i n c o r p o r a t e d .  

375 



temperature  retrievals  because  the  temperature  field  is  correlated 

over =lo00 km in  the  troposphere,  and “2000 km in  the  stratosphere. 

Similar  coorelations  exist  in  time,  and  they  also  could  be  utilized, 

as  could  independent  data  sets,  such  as  the  current NMC analysis, 

etc.  These  correlations  can  be  extrapolated  to  greater  distances 

in  time  and  space  by  means  of  atmospheric  prediction  models;  thus, 

enabling  each  retrieval  to  incorporate  still  larger  sets  of  inde- 

pendent  observational  data. 

Furthermore,  those  heavy  precipitation  cells  that  sometimes 

introduce  errors  into  retrievals  are  generally  much  smaller  than 

the  correlation  length of the  temperature  field,  and  should,  there- 

fore,  be  detectable  and  partially  correctable. 

One  formulation  for  such  problems  is  that of Kalman-Bucy 

filters  (Ref. 20) .  In  this  construct,  the  process  to  be  estimated 

is  assumed  to  be  drawn  from  the  class of first-order  continuous 

time  infinite-state  Markov  processes.  Its  action  upon  input  data 

is  to  optimally  estimate  the  truly  random  elements  controlling 

transitions  between  states.  These  random  elements  provide  infor- 

mation  which  is  then  used  along  with  deterministic  elements,  to 

update  the  filter’s  estimate of the  current  state of the  process, 

i.e.,  the  observables.  This  model  permits  estimation  over  a  finite 

observation  window  and  estimation of nonstationary  processes, 

neither of which  can  be  treated  by  conventional  Wiener  theory. 

Furthermore,  nonlinear  relationships  between  the  random  elements 

and  the  estimated  observables  can  be  introduced  in  a  natural  man- 

ner.  This  and  the  Markov  process  assumption  produce  a  very  con- 

venient  approach  for  retrieval  of  temperatures  or  any  other 

meteorological  parameters.  In  fact,  such  a  retrieval  process 

could  even  be  combined  with  the  numerical  weather  prediction 

process,  with  the  present  numerical  prediction  models  being  incor- 

porated  as  part  of  the  processor  that  estimates  the  observables. 
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111. SOUNDING  OF  ATMOSPHERIC  COMPOSITION 

Figure 1 illustrated  resonances of oxygen  and  water  vapor. 

Other  important  molecules  include 03, N20,  and CO. Stronger 

resonances  below  200  GHz  are  included  in  Table 1. 

TABLE 1 

Strongest Microwave Resonances below 
200 GHz of Trace Constituents 

. Species  Resonance  (GHz) 
H20  22.235 

183.310 

O3 

N2 O 
14  16 

101.737 
110.836 
125.087 
142.175 
165.784 
184.378 
195.430 

100.492 
125.614 
150.735 
175.856 

115.271 - c1 20 1 6 

The  spectra  of  these  and  other  molecules  was  recently  reviewed 

by  Waters  (Ref.  3). 

Such  spectral  lines  can  be  observed  passively  against  three 

different  backgrounds: (1) cold  space  reflected  by  the  ocean; 

(2) an  opaque  atmosphere  at a different  temperature  that  provides 

contrast;  and  (3)  cold  space,  as  in  the  limb-scanning  mode. 

Passive  microwave  satellite  measurements of atmospheric  com- 

position  have  been  made  only of water  vapor  and  liquid  water  over 

ocean;  the  high  reflectivity  of  ocean (= 60 percent)  near  the 

1.35-cm  resonance  provides a cold  background  for  thermal  emission 

from  both  water  vapor  and  liquid  water.  Figure 7 illustrates  the 
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F i g .  7 .  Computed b r i g h t n e s s   t e m p e r a t u r e  of s m o o t h   o c e a n   a t  

288 K o v e r l a i d   b y  (1) no a tmosphere ;  ( 2 )  a nomina l   a tmosphere ,  

i n c l u d i n g  a modest amount of w a t e r   v a p o r ;  ( 3 )  the s a m e   p l u s  a 

h e a v y   s t r a t u s   c l o u d ;   a n d  ( 4 )  a m o r e   h u m i d   b u t   c l o u d - f r e e   a t m o s -  

p h e r e .  

brightness  temperatures  that  would  be  observed  at  nadir  over a 

smooth  ocean  surface. 

The  spectrum  in  the  absence  of  any  atmosphere  would  not  be 

flat  (see  Fig. 7) because  the  dielectric  constant  of  sea  water 

depends  on  frequency  as  well  as  on  temperature, and salinity. 

This  temperature  dependence  has  the  curious  property  that  the  sea 

brightness  temperature  is  nearly  independent  of  sea  temperature  at 

wavelengths  near 1 cm;  it  increases  and  decreases  slightly  with 

temperature  for  longer  and  shorter  wavelengths,  respectively. 

This  fact  largely  removes  sea  temperature  as  a  major  source  of 

error  in  atmospheric  water  retrievals;  climatic  values  for  sea 

temperature  are  generally  sufficiently  accurate. 
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Atmospheric  water  vapor  appears  in  emission  against  the  cold 

ocean  background  with a line  shape  and  amplitude  that  is  nearly 

proportional  to  the  absorption  coefficient  of  the  atmosphere. 

This  almost  linear  relationship  results  from  the  Rayleigh-Jeans 

approximation  of Eq. (1) and  because  the  atmosphere  is  nearly 
transparent,  as  seen  in  Fig. 1,. even  at  the  center  of  the  resonance 
and  over  the  tropics.  The H 0 line  width  for  each  atmospheric 

layer  is  proportional  to  its  pressure,  and,  thus,  the  total  line 

shape  contains  information  about  the  water  vapor  profile  which  can 

be  retrieved.  Linear  and  quasi-linear  techniques  have  been  used 

successfully  for  estimating  water  vapor  abundances  and  profiles; 

the  problem  is  sufficiently  linear  that  they  generally  suffice 

(Refs.  21,  22,  and  23). 

2 

Water  vapor  weighting  functions  W(v,k)  may  be  defined  as 

r 

where  W(V,R)(K g m ) is  independent o f  the  water  vapor  profile 

pH O ( R )  (g  m-3)  for  small  perturbations  of p ( a )  about a standard 
atmosphere.  Because  water  vapor  weighting  functions  near  l-cm 

wavelength  have  widths  with a half-amplitude  of = 2  pressure  scale 

heights  or 216 h, water  vapor  retrievals  can  extract  little  more 

than  the  total  tropospheric  abundance  and  perhaps a water  vapor 

scale  height (p ( a )  usually  is  exponential  with a scale  height 
near  2.2 km) . 

-1 +2 

2 H20 

H20 

The  presence  of  clouds  and  precipitation  complicates  water 

vapor  retrievals  only  slightly  because  the  nonresonant  character 

of  cloud  absorption  can  be  distinguished  from  the  resonant  charac- 

ter  of  water  vapor  (see  Figs. 1 and 7), as  noted by Staelin  (Ref. 

21) and  others  (Refs.  22  and  23).  Rosenkranz,  et  al.  (Ref.  22)  con- 

cluded  theoretically  that rms accuracies  of  1.3 mm precipitable 

water  vapor  and 0.06 mm liquid  water  could  be  obtained  from  obser- 

vations  over  the  ocean  at  only  two  frequencies,  such  as  22.2  and 
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31.4 GHz. Comparisons  of  such  two-frequency  water  vapor  estimates 

with  radiosondes  yield  rms  errors  of  “1.2  and 4.4 mm (Ref.  23); 

the  poor  agreement  is  very  likely  due  to 

1. the  point-sampling  character of radiosondes  as  contrasted 

with  the  areas  of % lo5 km2 averaged  by NEMS or SCAMS, and 

2. the  inability  of  radiosondes  to  respond  well  to  low 

humidity. 

Theoretical  errors  can  be  reduced‘through  use  of  more  than  two 

sounding  frequencies. 

Heavy  precipitation  can  be  partially  opaque (2 4 dB attenu- 

ation)  near 1-an wavelength  for  precipitation  rates  above  “3 nun 

hr . Because  such  precipitation  is  obten  confined  to  convective 

regions  with  an  areal  extent  much  smaller  than  the -lo5 km2 sampled 

by NEMS or SCAMS, the  water  vapor  retrievals  are  not  significantly 

affected,  as  suggested  in  Fig. 8 which  presents  water  vapor  and 

liquid  water  retrievals  from NEMS over  an‘  Indian  Ocean  typhoon 

(Ref.  23).  If  high  angular  resolution  sounders  were  used,  then 

the  water  vapor  retrievals  over  the  opaque  storm  cells  would 

naturally  be  less  accurate. 

-1 

The  sounding  of  water  vapor  profiles  near  the  core  of  the 

opaque  183.3 GHz resonance  requires a different  retrieval  pro- 

cedure,  similar  to  that  used  for  interpreting  satellite  observa- 

tions of the  opaque  infrared  bands  of  water  vapor.  If  the  tempera- 

ture  profile  is known, then  each  value  of  brightness  temperature 

on  the  observed  resonance  corresponds  to  the  altitude  which  is 

being  reached  at  that  frequency;  this  altitude  level  is  usually 

near  an  optical  depth  of  unity.  We  now  define  the  contribution 

function,  C(v,a),  which  describes  the  degree  to  which  the  observed 

brightness  temperature  is  determined  by  the  temperature  at  various 

altitudes; it  is  naturally  peaked. 

TB(V) T(a)C(v,a)da r 0 (6) 

C(v,E)  goes to zero  above  the  atmosphere  and  at  large  optical 
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made n e a r  

19 GHz b y  E lec t r i ca , l l y   Scanned   Microwave   Rad iome ter  (ESMR) ( d a r k  

i s  warm and   humid ) ,   Tempera ture   Humid i t y   In f rared   Rad iome ter  (THIR) 

6.7 v m  ( d a r k  i s  d r y ) ,  and THIR 11.5 urn ( d a r k  i s  warm or c l o u d -  

f ree) .  NEMS r e t r i e v a l s   a l o n g  the center o f  these i m a g e s   a r e   p r e -  

sented f o r  l i q u i d   w a t e r ,   w a t e r   v a p o r ,   a n d  54.9 GHz b r i g h t n e s s  

t e m p e r a t u r e s .  Note the l a c k  o f  interference between the w a t e r  

v a p o r   a n d   l i q u i d   w a t e r   r e t r i e v a l s .  
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depths. The wid th   o f   th i s   func t ion   typ ica l ly  would approximate 

the  water vapor scale h e i g h t   i n   t h e   a l t i t u d e  zone  being sounded. 

Because the  contribution  function  depends  strongly on the  water 

vapor   p rof i le ,  it is  quite d i f f e r e n t  from the  usual  weighting  func- 

t i o n ,  a concept  which' is   inappropriate  here.  The peak  of  the con- 

t r i b u t i o n   f u n c t i o n   f o r   t h e  183 GHz H 0 resonance typically would 

f a l l  between 0 and - 8  km for  frequencies  between  the wing  and the  

l i ne   cen te r ,   r e spec t ive ly .  S t i l l  more opaque  resonances a t  

shorter  wavelengths  enable water vapor   p ro f i l e s   t o  be sensed t o  

s t i l l  h ighe r   a l t i t udes .  L i t t l e  can be learned   in   reg ions   wi th   zero  

lapse  rate, however,  except  perhaps the t o t a l  water vapor  content 

of t h a t   l a y e r .  Most other  resonances,   such as those of N20, CO, 

and some of 0 are genera l ly   no t  opaque  and  can be observed  over 

ocean o r   aga ins t   t he  background  of  an  opaque  troposphere;  the con- 

trast depends  upon the  temperature  difference  between  the atmos- 

phere a t   t h e  peak  of  the  resonant  contribution  function and t h a t  of 

the  background.  Although no  such  microwave  measurements  have y e t  

been made from  space,  they are q u i t e   f e a s i b l e .  

2 

3 

The most s e n s i t i v e  and p rec i se  way t o  measure  atmospheric com- 

pos i t ion  i s  by means of  limb  scanning. The path  length of t he  

r ad ia t ion  is  2300 km near   the  tangent   point  (where the   ray  is 

p a r a l l e l   t o  the t e r r e s t r i a l   s u r f a c e   o r   g e o i d ) ,  as contrasted w i t h  

"10 km for   nadi r   observa t ions .  This  factor   of   "30 i s  augmented 

another   factor   of   -10 by the   g rea te r   cont ras t   p rovided  by cold 

space,   as  opposed  to  that   supplied by the underlying  atmosphere 

for   nadir   observat ions.   Waters  ( R e f .  3)  has  analyzed  this  pos- 

s i b i l i t y   f o r   s e v e r a l   t r a c e   c o n s t i t u e n t s  and it appears   tha t  CO 

might be sensed up to   -100  km o r  more using  the 230 GHz resonance, 

H 0 t o  =lo0 km using 183 GHz, O3 t o  "100 km a t  184 GHz, e t c .  Such 

constituents  might  be  sensed down t o   a l t i t u d e s   o f  " 8  km, depending 

on t h e   a l t i t u d e s  of water clouds. The abundances  can be measured 

with  accuracies  of a f e w  percent  with 2 km v e r t i c a l   r e s o l u t i o n  

fo r   cons t i t uen t s   t ha t   a r e   su f f i c i en t ly   abundan t .   Exp lo i t a t ion  of 

2 
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these  techniques  will  require  somewhat  more  precise  antennas  than 

those  used  heretofore,  but  they  are  within  the  present  state of 

the  ,art  and  compatible  with  the  constraints  imposed  by  the  space 

shuttle  program. 

IV. SOUNDING OF ATMOSPHERIC PRESSURE 

There  are  at  least  two  approaches  to  the  sounding  of  atmos- 

pheric  pressure  using  microwave  techniques  and a single  satellite. 

These  include  measurement  of 

1. the  pressure-dependent  differential  atmospheric  absorption 

near a strong  resonance  of a constituent  like 0 which  has a 

nearly  constant  mixing  ratio;  this  can  be  done  in  principle  using 

radar  techniques  from a satellite  viewing  nadir  over  ocean;  and 

2' 

2. brightness  temperatures  at  the  limb  at  one  or  more  fre- 

quencies,  as a function  of  altitude  of  the  ray  tangent  point,  which 

must  be  known  to a precision  greater  than  that  desired  for  the 

measurements  of  pressure  altitude. 

The  successful  operation  of  any of these  techniques  would  require 

a level  of  precision  in  one  or  more  particulars  beyond  the  present 

state  of  the  art;  several  of  these  necessary  advances  appear  to  be 

feasible. 

Pressure  measurements  have  been  made  on  other  planets  for 

decades  by  observing  the  widths of spectral  lines  formed  by 

absorption  of  sunlight  reflected  from  the  planetary  surface  or 

from  cloud  layers.  Radar  measurements  of  Venus  near 3- and  10-cm 

wavelength  were  used  in a similar  manner  by  Barrett  and  Staelin 

(Ref.  24)  to  support  the  contention  that  the  surface  p.ressure  on 

Venus  was  very  high; CO was  the  presumed  microwave  absorber.  The 

same  technique  can  be  employed  from  Earth-orbiting  satellites,  for 

example,  using  radar  at  two  frequencies ~0.5-1 GHz apart,  centered 

near  52-52.5 GHz. Such  radar  echoes  might  suffer  attenuations  dif- 

fering  by  5-10 dl3 due  to  the  nearby O2 absorption  band;  the 

absorption  is a function  of  the  mass,  temperature,  and  pressure of 

2 
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the  atmosphere,  particularly  in  that  portion  below 3 h where  most 

absorption  would  occur.  Since  such 0 absorption  is  approximately 

proportional  to  the  square  of  pressure,  differential  attenuation 

should  be  measured  with  an  accuracy  of  -(lo  dB/lOOO) x 2 = 0.02 dB 

if  errors  of "1 mb  are  to  be  achievable.  This  is  an  unusually 

stringent  requirement  and  would  require  very  precise  calibration. 

The  measurement  and  interpretation  problem  is  compounded  by  the 

facts  that (1) the  radar  echo  strength  varies  randomly  at  the  two 

operating  frequencies,  (2)  sea  state  reflectivity  and  absorption  by 

clouds  and  water  vapor  are  slightly  different  at  the  two  frequen- 

cies,  and ( 3 )  the  absorption  is  somewhat  temperature  dependent 

(fortunately,  the  temperature  dependence  is  near  a  minimum  at 52. 

G H z ) .  These  difficulkies  notwithstanding,  pressure  accuracies  of 

a  few  mb  appear  to  be  achievable  in  principle. 

2 

The  use  of  limb-scanning  pressure  sensors  has  the  advantage 

. that  such  systems  could  map  the  entire  Earth  rather  than  only  nadir 

points  over  ocean.  The  technique  involves  use  of  the  neutral- 

point  concept  described  earlier,  wherein  a  particular  brightness 

temperature  at  a  particular  frequency  tends  to  occur  for a ray 

tangent  height  at  a  particular  known  pressure  altitude.  Because 

this  neutral-point  is  slightly  dependent  on  the  temperature  pro- 

file,  and  si-nce  the  ray  is  refracted so as to displace  the  apparent- 

tangent  height  by  perhaps  several  hundred  meters,  a  slightly  non- 

linear  inversion  procedure  would  appear  to  be  appropriate.  Although 

no  inversion  experiments  have  been  performed,  it  appears  likely 

that  pressure  altitudes  could  be  determined  with  an  accuracy  of 

z25-100  m  by  use  of 0 absorption  above  "10 h altitude.  This 

altitude  must,  of  course,  be  referenced  to  the  Earth,  which  would 

require  the  satellite  position,  altitude,  and  angular  orientation 

of  the  instrument  to  be  known  with  accuracies  on  the  order  of 

kilometers,  meters,  and 1 arc  sec,  respectively;  this  appears  to  be 

feasible  but  difficult. 

2 
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Similar  procedures  could  be  employed  in  the  infr'ared  region, 

but  even  the  slightest  trace  of  haze  or  clouds  could  become  a 

serious  source of error  here. A n  advantage  of  infrared  is  that  the 

antenna  would  be  smaller  and  easier  to  point  precisely. 

Neither  of  these  two  pressure  measuring  techniques  provides 

a  complete  pressure  profile;  the  radar  measures  an  average  pressure 

over  the  lowest  few km of  the  atmosphere,  and  the  passive  limb- 

sounding  technique  can  determine  pressure  altitudes 210-60 km 

(i-e.,  that  range  over  which  pressure  broadening  dominates  the 0 

line  widths,  and  water  vapor  and  refractive  effects  are  small). 

Either  technique  must  be  supplemented  by  temperature  profile 

measurements  to  yield  a  complete  pressure  profile,  and  the  accuracy 

of  these  derived  profiles  degrades  for  altitudes  far  from  the  pres- 

sure  reference.  Therefore,  a  good  combined  system,  if  feasible, 

might  use (1) limb-scan  measurements  to  map  globally  the  pressures 

near  the  tropopause, (2) nadir  radar  measurements  to  provide  more 

accurate  but  more  sparse  surface  pressures  over  ocean,  and 

( 3 )  microwave  or  infrared  temperature  profile  spectrometers  for 

enabling  the  pressure  measurements  to  be  extrapolated  to  all 

altitudes. 

2 

SYMBOLS 

B 

C ( V ,  E) 
d 

h 

I 

k 

R,R' 

n 

P 

AP/AT 

R 

receiver  bandwidth, Hz 

water  vapor  contribution  function 

diameter of droplets 

Planck's  constant 

intensity, W m Hz ster 

Boltzmann's  constant 

distance  along  ray  path 

refractive  index  of  droplets 

power  density, W Hz-l 

ratio  of  power  change  to  temperature  change 

surface  reflectivity 

-2 -1  -1 
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V 

T 

T 
0 

temperature, K 

antenna  temperaturer K 

an appropriate  constant  temperature, K 

receiver  noise  temperature,^ K 

sky  brightness  temperature  above  atmosphere, K 

surf  ace  temperature, K 

receiver  sensitivity, K 

temperature  or  water  vapor  weighting  function 

first  order  temperature  weighting  function 

wavelength, m 

frequency,  Hz 

water  vapor  density, g m-3 

receiver  integration  time,  sec 

atmospheric  opacity,  nepers 
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DISCUSSION 

Twomey: We  seem  to  have  uncovered  another  duality  here  apart  from 
the  one  Henry  Fleming  spoke  about.  When  the  infrared  people  com- 
pare  their  retrievals  with  the  radiosondes  they  say  we  don't  seem 
to  have'done  quite  as  well  as  we  hoped  for  with  this.  When  the 
microwave  people  compalfe  their  results  with  the  radiosondes  they 
say  the  radiosondes  don't  seem  to  be  doing  very  well. 

Wes twa ter :  You  mentioned, I believe,  that  your H20 retrievals  dif- 
fered  from  the  theoretical  results  by  about a factor  of  three  and 
I assume  that is in  standard  deviation.  Did  the  deviations  show 
any  systematic  component?  Were  they  greater  for  the  larger  water 
content  or  were  they  more  or  less  uniform  throughout  the  entire  dis- 
tribution  of  water  vapor  in  the  atmosphere? 

S t a e l i n :  Essentially  uniform.  That  is  an  interesting  question. 
One  would  expect  nonuniformity  in  the  errors  because  we  were  using 
a linear esthator in this  initial  procedure,  even  though  the  prob- 
lem  is  nonlinear  Here I think a partial  explanation  lies  in  the 
statistics  of  the  atmosphere. I think  the  water  vapor  scale 
heights  may  be  systematically  larger  where  we  have  larger  amounts 
of  water  vapor,  and  this  alters  our  retrievals  because  our  weighting 
function  is  nonuniform  with  altitude.  These  two  effects  may  tend 
to  cancel;  the  underestimate  due to high Hz0 opacity  baiances  the 
overestimate  that  results  for  large-scale  heights. 

Wes twa ter :  And  the  second  question,  was  there  any  correlation 
between  the  error  and  the  amount  of  liquid  water  content  that  was 
also  inferred?  In  other  words,  were  the  clouds  affecting  the 
retrievals  somewhat  more  than  what  your  theory  would  predict? 

S t a e l i n :  Ground  truth  data  is  poor  near  intense  storms.  However, 
satellite  passes  over  the  ITCZ  have  yielded  water  vapor  retrievals 
that  vary  smoothly  and  continuously  across  regions  where  the  liquid 
water  retrievals  vary  abruptly  from  zero  to  maximum  and  back.  Such 
insensitivity  to  liquid  water  suggests  this  is  not a problem.at 
this  spatial  resolution  of  the  order  of 200 km. 

P l a n t :  You  pointed  out  the  nicety  of  microwave  soundings  in a 
cloudy  atmosphere.  Could  you  make  some  comments  on a comparison 
between a microwave-only  temperature  sounding  and an infrared-only 
temperature  sounding  as  you  go  from a cloudy  atmosphere  to  par- 
tially  cloudy  atmosphere  to  clear  atmosphere? 

S t a e l i n :  That's a loaded  question. I think  it  depends  on  the 
details  of  the  systems.  In a clear  atmosphere,  the  principal  dif- 
ference  between  infrared  and  microwaves  is  that  the  temperature 
weighting  functions  in  the  microwave  region  are  decidedly  narrower 
above  the  tropopause.  Below  the  tropopause,  where  the  temperature 
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gradient  is  significant,  the  infrared  channels  yield comparale 
widths  and  the  four-micron  functions,  in  particular,  become  nar- 
rower  as  they  approach  the  surface.  In  partial  cloudiness, it 
depends  on  the  infrared  scientist's  agility  in  retrieving  through 
partially  cloudy  conditions.  Infrared  cannot  penetrate--unbroken 
cirrus,  whereas  cirrus is totally  transparent  at  the  microwave 
frequencies  we  are  using.  In  heavy  precipitating  clouds,  the 
microwave  channels  sounding  below "10 h will  be  affected,  and  it 
again  depends  on  one's  agility  in  handling  that  problem.  The  per- 
centage  of  the  time  that  these  sensor  types  have  problems  for 
various  weather  conditions  has  been  analyzed  to  sane  extent  by 
W. Smith  and,  perhaps,  others. I don't  recall  the  quantitiative 
results,  but  there  clearly  is  an  advantage to the  microwave  system. 

J. R u s s e l l :  In  the  weighting  functions  you  showed  for  the  limb 
mode, I think  you  stated  it  was 2 kilometers  width  at  the  half- 
height  point.  Was  that  for  an  infinitesimal  beam  width? 

S t a e l i n :  Yes.  And  half-height  in  this  case  is  not  really  the 
right  term  because  the  peak  amplitudes  of  those  weighting  functions 
are  much  greater  than  shown  in  the  figure  which  was  clipped  at 
the  right  margin. 

J. R u s s e l l :  How  much  does  the  width  change  with a finite  beam 
width? 

S t a e l i n :  One  would  convolve  the  two  functions.  To  first  order, I 
would  take  the  geometric sum of  the  two  widths.  If  we  have a 25 
kilometer  beam  and a 2-kilometer  weighting  function,  that  would  be 
roughly 3 kilometers. 

Chahine:  How  small  can  the  field  of  view  be  in  your  12-channel 
sounder,  reasonably? 

S t a e l i n :  The  12-channel  sounder  that  presently  exists  has a 7.5 
field  of  view,  which  is  the  same  as  present  microwave  sounder m i t  
on the  Tiros-N  Satellite. 

0 

Chahine:  Which  is  how  many  kilometers  ak  the  surface? 

S t a e l i n :  I forget  the  altitude  of  Tiros-N. I think  the  footprint 
is  on  the  order  of  150  kilometers. 

Kaplan:  How  much  worse  off  are  you  with  clouds  if  you  use  the 2 
millimeter  oxygen  band? 

S t a e l i n :  We  have  been  studying  that  questicm.  The  2-millimeter 
oxygen  band  has  an  advantage  that a smaller  antenna  will  give  you 
comparable  resolution.  Roughly  speaking,  the  118-GHz  opacity  of 
a given  cloud  or  cloud  layer  is  roughly a little  more  than  twice 
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what it would  be  at 60 GHz.. But  because of the  statistics of cloud 
opacity  as a function  of  position on the  Earth,  it  appears  we  will 
not  be  affected  much  more  than  we  are  at 60 GHz. To evaluate  that 
exactly  will  be  difficult  because  there  are  no  good  statistics  that 
are  relevant. 

U n i d e n t i f i e d . S p e a k e r :  Do you  see  any  advantage  in  going  to  shorter 
wavelengths,  higher  frequencies,  say,  millimeter  and  sub-millimeter 
waves  in  future  systems? 

S t a e l i n :  I think  it  is  in  the  study  of  trace  constituents  that  we 
will  obtain  the  greatest  advantage,  because  their  line  strengths 
typically  increase  at  shorter  wavelengths.  There  is  another 
advantage,  particularly  for  the  initial  synchronous  satellite 
systems  in  that  smaller  antennas  will  yield  better  resolution. I 
think  that  not  too  far  into  the  future  we  will  have  antennas  of 
almost  any  arbitrary  size  available. So t h a t  advantage  will  dis- 
appear  after  some  decades.  Although  the  insensitivity  to  clouds 
perseveres  into  the  short  millimeter  wavelengths,  it  does  degrade 
and  at  hundreds  of  gigahertz  even  ice  clouds  become  much  more 
significant. 

Wark: There's  one  thing  that  seems  to  be  swept  under  the rug a 
lot  of  times  and  that  is  all  the  inverse  problems  performed  near 
the  surface.  There  is  clearly a difference  between  the  sort  of 
thing  we  saw  Henry  Fleming  present  and  what  you  have  presented.in 
the 1000 to 800 millibar  range.  This  is  extremely  important  from 
a meteorological  standpoint  because  the  thing  becomes  very  bad 
there.  The  rest  of  the  sounding  is  correspondingly  bad.  Could 
you  comment  on  how  microwaves  affect  this  result  near  the  surface 
versus  your  method  of  retrieval? 

S t a e l i n :  If  the  atmosphere  is  clear  and  the  surface  is  known, 
then  performance  depends  on  the  shape  of  the  kernel. As I mentioned, 
the,  kernels  can  be  narrower  in  the 4 vm  band,  and  even  somewhat 
narrower  in  the  15  um  band,  depending  on  the  temperature  profile. 
In  the  presence  of  clouds,  infrared  retrievals  will  degrade.  In 
terms  of  the  retrieval  technique,  we  have  used  primarily  linear 
regressions.  The  temperature  retrieval  errors  increase  near  the 
surface  because  we  are  comparing  our  3-channel  retrievals  to 
rather  detailed  profiles  obtained  by  radiosondes  or  from  the  NMC 
analyses,  both  of  which  exhibit  inversions  and  other  sharp  dis- 
continuities  near  the  sur-face,  which  no  broad  kernel  could  recover. 

Wark: But  your  results  of  the  thousand  millibars  were  considerably 
worse  than  anything  we  have  seen  here. 

S t a e l i n :  That  is  largely  because  we  did  not  put  in  the  surface 
temperature.  Had  we  used  the NMC forecast  surface  temperature 
or an infrared  surface  temperature  estimate,  our  results  would 
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have  been  better. 

Wark: All  right,  then  it  is  the  method;  not  the  consequence  of 
the  employment  of  microwaves.  It  is  the  method  of  retrieval  where 
you do not  employ a piece  of  information? 

S t a e l i n :  That's  right.  We  definitely  perform  better  if  we  know 
the  surface  temperature  either  from  an  infrared  surface  tempera- 
ture  measurement  or  from a p r i o r i  information,  etc. 

Susskind: I will  make a comment  about  some  of  the  previous  things. 
We  have  been  analyzing  some  of  the  information  contained  in  the 
HIRS  IR  data  and  SCAMS  data,  both  on  Nimbus 6, and  with  regard 
to  some  of  the  questions  that  have  been  answered.  The  quality  of 
the  sounding  between  SCAMS  alone  and  HIRS  alone  is  very  comparable 
one  to  another.  In  the  presence  of  clouds,  if  it  is  completely 
overcast  you  are  out of the  game  in  the  infrared.  But,  say,  when 
it  is  80-85  percent  cloudy,  the  quality  of  the  soundings  is  com- 
parable.  And,  likewise,  with  surface  temperatures.  The  quality  of 
the  soundings  in  the  lower  troposphere is, in  fact,  comparable. 
We  got  results  of,  say, 3 RMS error  at  the  surface  in  the  micro- 
wave.  The  errors  are  largest  at  the  surface  and  at 850 mb and  are 
a little  larger  in  the  microwave  than  in  the  infrared,  but  we 
interpret  this  to  be  due  to  some  problems  in  calculating  the  sur- 
face  emissivity  exactly. But differences  are  very  small--maybe 
1/10  or  2/10  degrees  in  the RMS sense  between  the  microwave  and 
infrared.  And  we  have  come  to  the  conclusion  that  the  sounders  are 
quite  comparable  one  to  the  other--slightly  worse  errors  down  low, 
but  nothing  drastic. I might  add  that  our  results  are  obtained  with 
no  additional  surface  information  but  the  observations  and a 
climatology  guess. 

0 

S t a e l i n :  I think  one  has  to  be  careful  in  distinguishing  between 
comparisons  of  particular  instruments  and  comparisons  in  principle. 
In  other  words,  these  particular  satellites  have  both  infrared  and 
microwave  channels  which  might  be  chosen  differently.  Certainly 
with a larger  budget  one  would  use  more  than  three  microwave 
temperature-sounding  channels.  Then  the  performance  limits  are 
ultimately  set  by  the  widths  of  the  kernels,  and  the  e'ffects  of 
surfaces  and  clouds.  Surface  emissivity  effects  are  observable 
only  for  weighting  functions  that  peak  within = 4 km of the  sur- 
face.  Extreme  variations  for  the 4 km channel  of  NEMS  and  the 
2-km channel  of  SCAMS  were  approximately  1.5 K and i o  K, respec- 
tively,  in  brightness  temperature  as  the  satellite  passed  from 
ocean  to  land;  this  can  largely  be  compensated  by  use  of  window 
channels. 

Fraser:  Meteorologists, of course,  would  like  to  have  the  pres- 
sure  measured  to 10/10 of a percent  of  the  surface  pressure.  What 
development  efforts  are  underway  to  do  that  with  microwave? 
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S t a e l i n :  No major  efforts  to  my  knowledge. 

F r a s e r :  Because  it  is so important  and  you  indicated  that  it 
might  be  feasible. Is there  some  reason  for  this? 

S t a e l i n :  I should  say  none  that  are  funded.  There  has  been 
effort  and  interest  ih  this  in a number of quarters.  Some  of  these 
techniques  have  been  used  in  astronomy.  Radar  pressure  sounding 
data,  for  example,  was  used  on  Venus  over  ten  years  ago  by  Barrett 
and  myself to.support the  contention  the  atmosphere  was  dense. 
Limb sounding  measurements,  of  course,  have  also  been  used  in 
astronomy.  The  task  of  applying  these  techniques  to  actual 
working  instruments  involves  profound  engineering  problems. 
Desmond  Smith  in  Scotland  has  been  interested  in  this  problem  for 
many  years. I don't  know  the  present  status  of  that  work. I had 
one  student  write  his  thesis  on  this  subject.  But  there  has  been 
no  significant  funding.  Proposals  have  been  submitted,  but  other 
things  have  priority. 

Chahine:  One  of  your  former  students,  Dr.  Joe  Waters,  is  working 
on  the  development  of  pressure  sounder  at JPL. 

S t a e l i n :  I think  it  is  an  interesting  problem  and  obviously  of 
great  importance  if  one  can be successful.  More  effort  seems  to  be 
warranted. 
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APPLICATION  OF  STATISTICAL  INVERSION  TO 

GROUND-BASED  MICROWAVE  REMOTE  SENSING 

OF  TEMPERATURE  AND  WATER 

VAPOR  PROFILES 

E.  R.  Westwater  and M. T. Decker 
NOAA/ERL/Wave P r o p a g a t i o n   L a b o r a t o r y  

S u r f a c e - b a s e d   o b s e r v a t i o n s  o f  downwel l ing   microwave  ther- 
mal emission a r e   r e l a t e d  t o  t e m p e r a t u r e   a n d   h u m i d i t y   p r o f i l e s  
v i a  a s t a n d a r d   i n t e g r a l   e q u a t i o n  o f  r a d i a t i v e   t r a n s f e r .  Both 
i n  c l e a r   a n d  i n  c l o u d y   a t m o s p h e r e s ,   s t a t i s t i c a l  inversion. 
t e c h n i q u e s   c a n  be used t o  retrieve p r o f i l e s   f r o m  a d a t a  vector 
o f  b r i g h t n e s s   o b s e r v a t i o n s   a n d   s u r f a c e   m e t e o r o l o g i c a l  con- 
s t r a i n t s .  F o r  the c l e a r   c a s e ,  we i l l u s t r a t e   a c c u r a c y   p r e -  
dictions and p r o f i l e   r e t r i e v a l s  for  ( a )   s i n g l e - f r e q u e n c y  
angu lar - scanned   da ta ,  (b) m u l t i - f r e q u e n c y   a n g u l a r   s c a n n e d   d a t a ,  
and (e )  m u l t i - f r e q u e n c y  zeni th  d a t a .  For c a s e  (e )  we compare 
p r e d i c t e d   a n d   a c h i e v e d   a c c u r a c i e s  i n  a r e c e n t l y   c o n d u c t e d  
j o i n t  N O M - J P L  r a d i o m e t r i c   e x p e r i m e n t .   F i n a l l y ,  we  p r e s e n t  
r e t r i e v a l s  o f  c l o u d - c o n t a m i n a t e d   r a d i o m e t r i c   d a t a .  

I. INTRODUCTION 

The  continuous  measurement of temperature  and  humidity  in  the 

Earth's  boundary  layer is an  important  requirement  in  some  areas 

of  meteorological  research.  Ground-based  microwave  radiometric 

measurements  of  temperature  structure  show  promise  of  meeting  this 

need  and  the  technique  has  been  investigated  by  several  groups 
(Refs. 1, 2, 3 ,  and 4 ) .  Limited  information  on  the  moisture  pro- 

file  is  also  radiometrically  available  (Refs. 5 and 6). 

In  this  review,  we  outline  the  application of statistical 
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inversion  methods  to a few  of  the  increasingly  complex  measuring 

techniques  that  have  evolved  over  the  years.  For  each  method, 

statistical  inversion  appears  capable  of  extracting  maximum  infor- 

mation  from  the  measurements. 

The  extent  to  which  inversion  theory  applies  to a problem 

depends  strongly  on  the  solution  of  the  direct  problem;  i.e.,  given 

the  profile,  can  we  calculate  the  measurements  to  within  the  experi- 

mental  accuracy?  We  therefore  spend  some  time  discussing  the 

accuracies  of  microwave  thermal  emission  calculations. 

We  then  review  temperature  retrieval  results  from  single-  and 

multiple-frequency  angular  scanning  radiometers.  Finally,  we  con- 

clude  with  recent  results  in  multi-frequency  sensing  of  temperature 

and  moisture  profiles. 

11.  MICROWAVE  ATTENUATION AND EMISSION  IN  CLEAR AND CLOUDY 
ATMOSPHERES 

Measurements  of  microwave  radiant  power  are  commonly 

expressed  as  an  equivalent  black  body  temperature,  or  brightness 

temperature,  Tb.  Except  during  rain,  atmospheric  scattering  is 

small  relative  to  absorption.  For a nonscattering  atmosphere  in 

local  thermodynamic  equilibrium,  the  downward  brightness  tempera- 

ture  at  frequency v is  given  by 

m S 

T (v)  = Tb (ext)~ + T av exp ( -  1 a (s')ds')ds b v o  0 V 

where T is  absolute  temperature (K), a is  absorption  coefficient 

(h") I Tb (ext) is  brightness  temperature  external  to  the  Earth's 
atmosphere (K), T is  transmission  through  the  atmosphere,  and s 

is  path  length  from  the  receiver  to  emitting  volume (km). In  the 

troposphere,  microwave  absorption  is  due  principally  to  molecular 

resonances  of O2 (60 GHz)  and H 2 0   ( 2 2   G H z )  and  to  clouds  and  rain. 

In  general,  the  absorption  is a strong  function of composition  and 

a weak  function  of  temperature.  Thus,  around 22 GHz,  the  emission 

varies  principally  because  of  variations  in  water  concentration, 

V 

V 
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whereas  at 60 GHz, the  emission  from  the  well-mixed  constituent 0 2 
depends  mainly  on  temperature. For ground-based  applications,  the 

term T describes  discrete  external  sources,  such  as  the  Sun 

or  Moon,  and  the  continuum  "big  bang"  contribution  of 2.9 K. 

Calculations  of  the  microwave  absorption  coefficient  are  shown  in 

Fig. 1. 

(ext) 
b 

A. Water  Vapor  Attenuation 

Water  yapor  attenuation  arises  from  the  rotational  transition 

at 22.235 GHz and  the  .nonresonant.  contribution  of  submillimeter 

and  infrared  lines.  At  frequencies  below 100 GHz, the  spectrum  is 

the  sum  of a resonant  term  and a contribution  from  the  higher  fre- 

quency  lines  that  varies  as v2.  An excellent  summary  and  dis- 

cussion  of  the  theoretical  experimental  basis of water  vapor  atten- 

uation  calculations  are  given  by  Waters  (Ref. 7 ) .  

T = 288.16 K 
P = 101.3.25 mb 

~~ 

10 20 30 40 50 60 70 80 90 1 0 0  
Frequency GHz 

Fig. 1. Microwave  atmospheric  absorption  in  clear  air, 

clouds,  and  rain. a = absorption  coefficient, e = attenuation 

coefficient. (1 bar = 100 kpa) 
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Eor  remote  sensing of water  and  temperature,  we  must  accu- 

rately  calculate  water  vapor  emission  and  attenuation  from  profiles 

of  meteorological  variables.  Since  several  equations  to  calculate 

vapor  attenuation  exist  in  the  literature  (Ref. 7) ,  we  thought 

that a comparison  of  mdre  recent  models  in  brightness  calculations 

would  be  at  least  suggestive  of  the  accuracy  to  which  the  clear  air 

direct  problem  is  solved  in  the 20-35 GHz  band.  Thus,  we  present, 

in  Table 1, comparisons  of  calculations  of  brightness  temperature 

for  five  selected  radiosonde  profiles.  The  calculations  labeled 

BA  used  constants  derived  by  least  squares  from  the  absorption 

data  of  Becker and Autler  (Ref. 8); L labels  calculations  using 

constants  derived  by  Liebe  (Ref. 9) using  dispersion  spectroscopy; 

finally W labels  the  results  using  parameters  given  by  Waters 

(Ref. 7) .  BA  and L assume  the  Van  Vleck-Weisskopf  line  shape; W 

uses  that  of  Gross-Zhevakin-Naumov.  When  compared  with  radio- 

metric  accuracies  that  approach 1 K, the  agreement  is  not  com- 

pletely  satisfactory,  especially  for  the  profiles  with  larger 

water  content.  If  one  accepts  the  more  recent  results (L and W), 

the  agreement  is  within 5%. 

B.  Oxygen  Attenuation 

Beginning  with  the  classic  theoretical  paper  by  Van  Vleck 

(Ref. 10) on  microwave  absorption  by  molecular 0 a large  amount 

of  theoretical,  laboratory,  and  atmospheric  research  has  been 

devoted  to  the  understanding  of  attenuation  from  this  constituent. 

As a consequence,  the  knowledge  of O2 absorption  parameters  and  of 

related  pressure  broadening  theory  has  steadily  increased. Two 

recent  advances  are  of  note.  The  first  is  the  development  of  the 

dispersion  spectroscopy  technique  by  Liebe  and  its  application  to 

the  determination  of  the  spectroscopic  parameters  of 0 (Ref.  11). 

The  second  is  Rosenkranz's  (Ref.  12)  theoretical  attenuation  model 

which  accounts  for  overlapping  lines  in  the  oxygen  complex. 

2 '  

2 

As  in  the  previous  case  of  water  vapor,  we  wanted  to 
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TABLE 1 

Pro- 
file 

1 
2 
3 
4 
5 

~ 

Comparison of C a l c u l a t e d  Zenith B r i g h t n e s s  
T e m p e r a t u r e s   a t  22 and 31 GHz R e s u l t i n g  

from V a r i o u s  Choices of S p e c t r a l  
Line Parame ter s  

~~ . . ~- 
Liquid 

content BA L W BA L W 
water  22.235  GHz  31.65  GHz 

0.8 23.4 22.3 21.4 14.7 15.0 14.5 
1.1 28.6 27.2 26.1 16.5 16.9 16.3 
1.3 31.1 31.5 30.1 18.1 18.5 17.7 
2.8 68.2 64.5 61.5 29.0 30.1 28.3 
3.6 74.9 70.8 67.5 31.2 32.4 30.4 

determine  the  degree  to  which  contemporary  absorption  models  agreed 

with  each  other. To this  end,  we  performed  calculations  of  zenith 

brightness  using  three  absorption  models:  the  first  (RMC)  used 

the  Van  Vleck-Weisskopf  line  shape  with  constants  given  by  Reber, 

Mitchell  and  Carter  (Ref.  13);  the  second  (R)  used  Rosenkranz's 

(Ref.  12)  line  shape  and  the  constants  given  in  his  paper;  the 

third (L) used  Liebe's  measurements  (Ref.  ll),  the  Rosenkranz  line 

shape,  and  Rosenkranz's  value  of  the  non-resonant  line  width.  The 

results  are  shown  in  Table  2. 

There  is  close  agreement  between  all  three  models  at  53.8  and 

55.5  GHz  and  R  and  L  agree  well  also  at  52.8  GHz.  The  difference 

between  RMC  and  the  other  two  at  the  most  transparent  channel, 

52.85  GHz,  is  almost  constant ( =  4.2 K) and  occurs  primarily 

because  of  the  difference  in  absorption  prediction  in  t.he  pressure 

range  100-500 mb. 

C.  Comparison  of  Clear  Air mission Measurement  and  Calculations 

Five-channel  microwave  observations  were  taken  at  Pt. Mum, 

California  and  were  kindly  provided  by B. Gary  and N. Yamane  of 
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TABLE 2 

Comparison of C a l c u l a t e d  Zenith B r i g h t n e s s  
T e m p e r a t u r e s  ( K )  i n  the Oxygen  Band 

R e s u l t i n g  from V a r i o u s  
A b s o r p t i o n  Models 

~~~ 

52.85  53 -85 
Pro- GHz . GHz 
E L -  file  RMC  R  L "_ R " L __ 
1 194.8 190.6 191.3  251.2  250.8  251.2 
2  191.5  187.2  187.7  250.7  250.3  250.6 
3  193.8 189.6 190.0 257.0  256.8  256.9 
4 190.6 186.3  187.0  248.3  248.0  248.4 
5 189.9 185.5 186.0 252.4  252.1  252.4 

" 

55.45 
GHz 

RMC R L 
281.5 281.6 281.7 
280.8 281.0 281.0 
289.7 289.8 289.9 
278.7 278.9 278.9 
287.4 287.6 287.6 

Jet  Propulsion  Laboratory  (JPL).  Their  radiometer  was  similar  to 

the  SCAMS  system  used  on  the  Nimbus 6 satellite  (Ref. 14). During 

the  three-week  period  of  observations,  thrice-a-day  radiosondes 

obtained  standard  meteorological  soundings  of  temperature,  pres- 

sure,  and  humidity.  Calculations of brightness  temperature  were 

made  by  using  the  constants  of  Becker-Autler  for  water  vapor,  and 

those  of  Liebe  for 0 The  comparison  of  measurements  and  cal- 

culations  are  shown  in  Table 3. Considering  the  difficulties  in 

making  absolute  radiometric  measurements and in  observing  the  same 

volume  of  air  with  radiosonde  and  radiometer,  the  agreement  in  the 

0 band  is  quite  good.  Note,  however,  the  relatively  large  vari- 

ance  at  the  22  and  31 GHz channels.  Because  of  the  difficulty  in 

obtaining  reliable  direct  measurements  of  humidity  profiles  by 

radiosondes  (Refs. 15 and  161,  these  differences  may  not  be  caused 

by  incorrect  absorption  coefficients. 

2- 

2 

D. Attenuation  by  Clouds  and  Rain 

Attenuation  from  a  distribution of spherical  particles  of  known 

dielectric  properties  can  be  calculated  by  classical  electromag- 

netic  theory.  Depending  on  the  ratio of particle  size  to 
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TABLE 3 

Average  and Root-Mean-Square ( m S )  Differences 
(K) between  Measured  and  Calculated 

Brightness  Temperatures 
(N = 24 Radiosonde 

Observations) 
Frequency (GHz) 

Difference  22.234 31.65 52.85 53 -85 55.45 
Average 2.5 1.7 0.2 0.1 -1.3 
Root-mean-square  3.4 1.8 1.8 0.8 1.4 
Percent  12.6 11.2 0.9 0.3 0.5 

wavelength,  simplicity or complexity  prevails.  In  the  domain 

here  this  ratio  is  small,  called  the  Rayleigh  region,  attenuation 

is  independent  of  size  distribution  and is directly  proportional 

to  total  mass  of  droplets.  In  addition,  scattering  is  negligible 

relative  to  absorption.  For  large  particles,  Mie  theory  must  be 

used,  and  attenuation  depends  on  size  distribution  in  both  absorp- 

tion  and  scattering.  For  our  purposes,  we  will  consider  water 

clouds  with  modal  radii  less  than 50 pm to  be  in  the  Rayleigh 

region  for  frequencies  less  than 100 GHz.  Calculations  of  water 

absorption  for  a  cloud  liquid  water  content  of p = 0.1 g/m3 

are shown in  Fig. 1. Depending  on  the  frequency,  spherical  ice 

particles  absorb  from  one  to  two  orders  of  magnitude  less  than an 

equivalent  amount  of  water. 

liquid 

In  contrast to nonprecipitating  clouds,  rain  (and  hail)  both 

scatters  and  absorbs  microwave  energy.  The  attenuation  coefficient 

e  must  be  calculated  from  Mie  theory  for  both  absorption  and  scat- 

tering  coefficients.  Calculations of e  for  a  moderate  rain  of 

12.5 m/hr are  also  shown  in  Fig. 1. We assurled a Laws  and 

Parsons  (Ref. 17) size  distribution  for  this  rain  rate  (liquid) 

water  content = 0.6 g/m3) . It is  clear  that  rain  dominates  all 

other  sources of attenuation  except  in  the  vicinity of the  oxygen 

complex. 
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I II I I  ' 

The  atmospheric  thermal  emission  spectrum  in  the  presence  of 

a cloud  can  differ  considerably  from  that  obtained  under  clear 

conditions. In detail,  the  amount of contrast  depends  on  the 

height  proffles  of  temperature,  humidity,  and  liquid  content. 

However,  the  largest  pontribution  .to  the  dif.ference  is  the  liquid 

thickness  with  the  emission  being  relatively  insensitive  to  the 

height  and  geometric  thickness of the  cloud  (Ref. 18). Table 4 

shows  estimated  rms  differences  between  clear  and  cloudy  bright- 

ness  temperatures  for  the  July  climatology  of  Pt.  Mugu,  California. 

These  differences  clearly  show  the  need  for  cloud  correction. 

Similar  calculations  for  ocean  climatologies  indicated m s  dif- 

ferences  about  twice as large  as  those  of  Table 4. 

111.  STATISTICAL  INVERSION OF GROUND-BASED  MICROWAVE  RADIOMETER 
DATA  TO  RECOVER  VERTICAL  TEMPERATURE  PROFILES 

Minimurn-variance  statistical  inversion  is  used  to  estimate a 

parameter  vector p from a data  vector d according  to  the  well- 
known  prescription 

- 

In  Eq. (21, e is  the  estimator  of p, < - >  refers  to  ensemble 

averages  over  joint  distributions of p and d, and  primes  denote 
- 

- ... 

TABLE 4 

Rms Differences be tween   C lear   and   C loudy  
Zenith B r i g h t n e s s   T e m p e r a t u r e s  

Frequency, Rms difference, 
GHz K . .  

22.235  3.6 
31.65 7.6 
52.85  6.4 
53.85  2.0 
55.45 0.1 
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departures  from  mean  values.  The  assumptions  and  derivations 

leading  to  this  equation  are  given  by  Rodgers  (Ref. 19). The 

covariance  matrix of this  estimate, S is  given  by p"' 

The  ith  diagonal  element  of S represents  the  residual  variance 
CL E-P 

of  the  estimate  of  the i"' pa;Geter  and  is  a  direct  measure  of 

solution  quality. If p represents  a  discretized  profile  of  some 
variable,  then  the  matrix  trace  of S . is  a  useful  measure  of 

overall,  solution  quality.  Here  p - usually  represents  vertical 
temperature  or  humidity  profiles  at  a  sufficiently  dense  set  of 

height  coordinates,  and  d - is  some  function  of  observed  brightness 
temperatures. 

e-P 

The'application  of  these  equations  to  ground-based  (g.b.) 

sensing  of  meteorological  profiles  differs  in  several  respects 

from  the  corresponding  satellite  retrieval  problem: 

(a)  Satellite  retrievals  use a priori  statistics  appropriate 

to a  latitudinal  region;  a  ground-based  application  requires  only 

single-station  statistics.  Consequently,  the a pr ior i  variance of 

the  g.b.  ensemble  is  usually  much  less  than  that  used  for  satel- 

lites. 

(b)  For  the  g.b.  problem,  direct  observations  of  the  desired 

profile  at  the  surface  can  usually  be  obtained.  This  can  be 

imposed  as an exact  constraint  on  the  inferred  profile,  which,  in 

addition,  further  .reduces  the a priori variance  at  all  levels, 

since  we  are  now  averaging  over  an  ensemble  with  fixed  surface 

conditions. 

(c) A practical  consequence  of  (a)  and (b) is  that  linear 

methods  are  frequently  appropriate,  because  of  the  relatively 

small  variation  about  the  initial  guess  profile. 
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A. Temperature  Sensing  by  Inversion  of  Single-Channel  Angular- 
Scanned  Radiometric  Data 

Initially,  ground-based  temperature  sensing  was  attempted  by 

fixed-frequency  angular  scanning  methods  (Refs.  1,20,  and 21). A 

typical  set  of  weighting  functions  is  shown  in  Fig. 2. Although 

these  weighting  functions  attain  their  maxima  at  the  surface, 

linear  combinations of them  can  be  made  to  peak  at  various  alti- 

tudes  yielding  a  spatial  resolution  that  degrades  with  altitude 

(Ref. 3 ) .  

Weighting  functions  give  the  system  response  to  a  delta- 

function  input;  another  meaningful  system  characterization  is  the 

total  variance  of  the  observations, and its  partitioning  into  the 

contributions  from  all  relevant  meteorological  variables. An 

example  of  this  analysis  is  shown  in  Fig. 3 ,  in  which  partial 

variances  in  T  from  fluctuations  in  temperature,  relative  humidity, 

and  pressure  are  shown  as  a  function of elevation  angle.  Although 

this  channel  is  in  the 0 band,  the  fluctuations  due to humidity 

exceed  those  from  temperature  for  angles  greater  than 20 . 
The  reduction  in  "noise"  due  to  surface  constraints  is  shown  in 

Fig. 4, where,  in  particular,  the  variance  in T due  to  pressure 

fluctuations  is  reduced  to  almost  zero.  However,  the  contamination 

of  the  temperature  "signal"  due  to  the  humidity  "noise"  is  still 

extensive  and  really  requires  a  water  channel  €or  its  removal. 

b 

2 
0 

b 

As  mentioned  earlier,  the  diagonal  elements  of S A are  a 
T-T 

measure  of  solution  quality.  Plots  of  the  square  roots  of  these 

diagonal  elements  as  a  function  of  altitude  indicate  the  expected 

standard  deviation  of  the  solution  over  an  ensemble  of  profiles. 

A n  example  of  this  type of-plot is  Fig. 5, which  shows  theoretical , 

retrieval  accuracy  for  several  choices  of  operating  frequency  for 

the  August  climatology  of  Salt  Lake  City,  Utah.  These  calculations 

predict  an  accuracy  of  somewhat  better  than 1 K up  to 3 km in 

altitude.  Retrieval  of  profiles  from  radiometric  data  (clear 

404 



0 0.2  0.4 0.6 0.0 1.0 
Temperature  Weighting Function Relative Units 

Fig. 2. Temperature  weighting  functions for  ground-based 

angular  scanning  at 54.5 GHz. 
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Fig. 3. Contribution to fluctuations  in  brightness  tempera- 

ture  at 52.5 GHz from  temperature,  humidity,  and pressure. 
0 
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Fig. 4 .  C o n t r i b u t i o n  t o  f l u c t u a t i o n s  i n  b r i g h t n e s s   t e m p e r a -  

t u r e   a t  52.5 GHz from t e m p e r a t u r e ,   h u m i d i t y ,   a n d   p r e s s u r e .  

C o n s t r a i n e d   s u r f a c e  conditions. 

skies  only)  gave  accuracies  very  close  to  these  predictions  (Ref. 

21).  Examples  of  profile  recoveries  from  single-channel  angular 

scan  data  are  given  in  Figs. 6 and 7. 

B. Temperature  Sensing  by  Inversion of Multi-Spectral  Angular- 
Scanned  Radiometric  Data 

Although  the  simplicity  of a single-frequency  angular- 

scanning  radiometer  is  attractive,  scanning  with a multi-channel 

system  can  significantly  improve  retrieval  accuracy  (Ref.  22). An 

example  of  the  amaunt  of  improvement  can  be  seen  in  Fig. 8 in  which 

theoretical  retrieval  accuracy  for  several  systems  is  shown  as a 

function  of  altitude.  Table 5 gives  an  explanation  of  the  spec- 

tral  combinations  of  Fig. 8; combination  1A  refers  to  experi- 

mental  noise  level  of 0.1 K and  represents  somewhat  of a practical 
0 
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Fig .  5 .  T h e o r e t i c a l   a c c u r a c y  i n  r e t r i e v i n g   v e r t i c a l   t e m p e r -  

a t u r e   p r o f i l e s   b y  inversion of s i n g l e - f r e q u e n c y   a n g u l a r   s c a n n e d  

r a d i o m e t e r   d a t a .  oE = assumed   i n s t rumen t  noise level.  0 .= 

a p r i o r i   s t a n d a r d   d e v i a t i o n  for  f i x e d   s u r f a c e   c o n d i t i o n s .  
T 
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F i g .  6 .  T e m p e r a t u r e   p r o f i l e  derived f r o m   s i n g l e - f r e q u e n c y  

a n g u l a r   s c a n n e d   r a d i o m e t e r   d a t a   a t   C i n c i n n a t i ,  Ohio. A p r i o r i  

s t a t i s t i c s   f r o m   D a y t o n ,  O h i o .  T = r a d i o s o n d e   p r o f i l e .  T = mean 

p r o f i l e  for  c o n s t r a i n e d   s u r f a c e   c o n d i t i o n s .  !? = inferred p r o f i l e .  

- 
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F i g .  7 .  T e m p e r a t u r e   p r o f i l e  derived from s i n g l e - f r e q u e n c y  

a n g u l a r   s c a n n e d   r a d i o m e t e r   d a t a   a t   R a l e i g h - D u r h a m ,  North C a r o l i n a .  

A p r i o r i   s t a t i s t i c s  from Greensborough,  North C a r o l i n a  - rad iosonde  

p r o f i l e .  3 = inferred p r o f i l e .  

TABLE 5 

E x p l a n a t i o n  o f  S p e c t r a l   C o m b i n a t i o n s  
Employed t o  E s t i m a t e   T e m p e r a t u r e  

Profiles 
~~.~ 

Input data 
Elevation  angle  Frequency 

Combination  (deg) (GHz 1 
~~ .. 

1 5 54.5, 55.5 
10 5 4 - 5 1  55.5 
15 54.5, 55.5 
30 53.5, 54.5,  55.5 
60 52.5, 53.5,  54.5 
90 52.5, 53 -51  54.5 

2 90 52.5, 53-58  54-51 55.5 
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F i g .  8 .  Theore t i ca l   accuracy   in   r e t r i ev ing   ve r t i ca l   t emper -  

a ture  profi les  from  various  combinations of mul t i - spec t ra l  m u l t i -  

angle   radiometer   da ta ,   Denver ,   Colorado  (af ter  R e f .  2 0 ) .  
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limit  in  measurement  accuracy;  the  noise  levels  in  other  combina- 

tions  were  obtained  from  comparison of measurements  and  calcula- 

tions  of  brightness  temperature.  The  multi-spectral  angular-scan 

combination 1 improves  the  retrieval  accuracy  over  the  single- 

frequency  scans  by a mal;gin  of about.two to  one. 

Typical  examples  of  the  low-altitude  temperature  structure 

that  can  be  recovered  is  shown  in  Figs. 9, 10, and 11, which  show 

retrievals  of a low  altitude  elevated  inversion, a ground-based 

inversion,  and a low-level  super-adiabatic  profile.  Note  expe- 

cially  the  improvement  in  the  recovery  of  the  elevated  inversion 

over  the  single-frequency  result  of  Fig. 7. 

IV.  RECENT  RESULTS  IN  INVERSION  OF  GROUND-BASED  MULTI-SPECTRAL 
RADIOMETRIC  DATA  TO  INFER  TEMPERATURE 

AND HUMIDITY  PROFILES 

We  are  currently  investigating  the  feasibility  of  sensing of 

temperature  profiles  from  an  ocean  data  buoy-mounted  radiometer. 

Because  of  buoy  motion,  the  previously  discussed  angular  scanning 

techniques  are  not  practical;  in  addition,  the  cloud  problem  dic- 

tates  the  need  for  two  moisture  channels  to  sense  and  to  correct 

for  clouds.  Cloud  correction  algorithms  appropriate  for  microwave 

passing  sensivg  have  been  published  by  Westwater,  et  al., 

Rosenkranz,  et  al.,  and  Fowler,  et  al.  (Refs. 18, 23, and  24). 

The  National  Weather  Service  desires  that  the  temperature  of 

layers, 100 mb in  thickness,  be  determined  with  accuracy f 1 K. 

Although  temperatures of the  lowest  two  layers  could  be  useful, 

retrievals  to 500 mb are  wanted.  Predictions  for  ocean  clima- 

tologies,  using  Eq.  (3),  showed  that  under  clear  conditions, a 

three-frequency  zenith  looking  radiometer  could  meet  the  lower 

altitude  requirements  and  could  be  reasonably  close  to  those  at 

the  higher  altitudes  (Ref.  18).  Accuracy  predictions  are  shown 

in  Fig. 12 for  several  systems  under  consideration;  the  tempera- 

ture  weighting  functions  for  system C are  shown  in  Fig.  13. 
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F i g .  9 .  Inferred a n d   r a d i o s o n d e   t e m p e r a t u r e   p r o f i l e s   f r o m  

m u l t i - s p e c t r a l   m u l t i - a n g l e   r a d i o m e t e r   d a t a  for  040.0, A p r i l   2 8 ,  

1971. A p r i o r i   s t a t i s t i c s   f r o m  Denver, Colorado.  (Af ter  R e f .  20.)  
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F i g .  12. Comparison of s e v e r a l   r a d i o m e t r i c   s y s t e m s  i n  

r e t r i e v i n g   t e m p e r a t u r e   l a y e r s  of 100-mb thickness d u r i n g   c l e a r  

conditions a t   o c e a n   c l i m a t o l o g i e s .   F i v e - s t a t i o n   r m s   a v e r a g e .  

I n s t r u m e n t a l  error = 0.5K. S y s t e m s :  A(52.8,  55.4,  58.8,  20.6, 

31.65 GHZ); B(54.0,  55.4,  58.8,  20.6,  31.65 GHz); C(52.8, 54.0, 

55.4,  20.6,  31.65 GHz); D(55.4, 58.8 GHz). 
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Temperature Weighting Function Relative Units 

F i g .  13. T e m p e r a t u r e   w e i g h t i n g   f u n c t i o n s  for ground-based 

s e n s i n g   b y  SCAMS r a d i o m e t e r .  

As mentioned  in  Section II.D, both  the  52.85 GHz and  the 

53.85 GHz channels  require  cloud  correction.  The  results  shown 

in  Fig. 14 indicate  that  with  the  addition  of  the  two  water  cor- 

recting  channels,  and  with  a  careful  choice  of  frequency  in  the 0 

band,  retrieval  accuracies  approaching  those  in  clear  air  can  be 

obtained.  On  the  basis  of  the  calculations  shown  in Figs. 12 and 

14,  the  radiometric  system C (SCAMS) was  chosen  for  experimental 

verification of the  temperature  sensing  capability  of  the  buoy- 

based  system. 

2 

The  experimental  program  to  confirm  the  theoretical  predic- 

tions  is  being  conducted  jointly  by  National  Oceanic  and  Atmospheric 

Administration (NOAA) and  the  Jet  Propulsion  Laboratory.  During 

a  three-week  measurement  period  in  March  1976,  at  Point  Mugu, 

California,  21  suitable  radiometer-radiosonde  observations  were 

obtained.  Although  some  of  the  data  were  taken  when  there  were 

visual  observations  of  clouds,  the  radiometrically  estimated  liquid 

content  was  less  than  0.02 mm; hence,  the  clear  air  retrieval 
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Standard  Deviation' 'K 

Fig .   14 .   Comparison  of s e v e r a l   r a d i o m e t r i c  s y s t e m s  i n  

r e t r i e v i n g   t e m p e r a t u r e   l a y e r s  of 100-mb thickness d u r i n g   c l o u d y  

c o n d i t i o n s   ( l i q u i d  thickness 4 mm H 2 0 ) .  F i v e - s t a t i o n  rms  a v e r -  

a g e .   I n s t r u m e n t a l  error - 0.5 K. S y s t e m s :  A (52 .8 ,  55.4,. 58.8, 

20.6,   31.65 G H z ) ;  B (54 .0 ,   55 .4 ,  58.8, 20.6,  31.65 G H z ) ;  C(52 .8 ,  

54 .0 ,   55 .4 ,   20 .6 ,  31.65 G H z )  ; D(55.4,  58.8 GHz)  . 

algorithms  were  used  exclusively.  The a p r i o r i  data  base  was  two 

years  of  twice.daily  soundifigs  during  February,  March  and  April, 

taken  in 1973-1974. The  statistical  summary of experiment  results 

are  compared  with a p r i o r i  predictions  in  Fig. 15. Although  the 

observed  variability of the 21 profiles  about  the  three-month 

a p r i o r i  is somewhat  greater  than  the  theoretical  average,  the 

achieved  retrieval  accuracies  are  in  close  agreement  with  pre- 

dictions. It is  somewhat  unusual  that  theory  predicts  (a)  no 

reduction  in  variance at about  750 mb above  the  surface,  and 

(b)  a  modest  reduction  in  variance  above  this  level.  The  experi- 

ment  results  confirm  this  prediction. 

Low  resolution  information  on  the  water  vapor  distribution  is 

also  contained  in  the  five-channel  measurements.  Typical  water 
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Fig. 15. RMS accuracy  in  retrieval of 100-mb layer  averaged 

temperature, Pt. Mugu,  California,  March 1976, 21 profiles. 

vapor  weighting  functions  for  the SCAMS system  are  shown  in 

Fig. 16. Statistical  retrieval  algorithms  were  again  applied  to 

the 21 sets  of  radiometer  observations  to  infer  water  vapor  pro- 

files.  The  summary  of  results  is  shown  in  Fig. 17, and  typical 

temperature  and  humidity  retrievals  are  given  in  Figs. 18 and 19. 

Another  set  of  observations  was  taken  by JPL at Pt.  Mugu  in 

July 1976. In  all, 22 concurrent  radiometric  and  radiosonde 

observations  were  obtained.  The  statistical  retrieval  algorithm, 

in  Eq. (21, was  used  to  estimate  the  cloud  liquid  water  content 

(LWC) of each  of  the  profiles. As mentioned  earlier, we classify 

a profile as cloudy  if  the  estimated  LWC  is  greater  than 0.02 mm 

(a LWC of 0.02 mm will  give  a 1 K change  in  brightness  temperature 
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F i g .  1 6 .  Water   vapor  d e n s i t y  w e i g h t i n g   f u n c t i o n s  for ground- 

based  SCAMS r a d i o m e t e r .  
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F i g .  17.  Rms’accuracy  i n  r e t r i e v a l s  of a b s o l u t e   h u m i d i t y . ,  

P t .  Mugu, C a l i f o r n i a ,  March 1976,  21 p r o f i l e s .  
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F i g .  18.  Examples o f  temperature profiles  retrieved from SCAMS radio- 

metric da ta  (dashed l ines)  compared with concurrent radiosondes (sol id   l ines) .  
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Fig. 1 9 .  Examples of water vapor profiles  retrieved from SCAMS radio- 

metric d a t a  (dashed l ines)  compared w i t h  concurrent  radiosonde prof i les  (solid 

l ines)  . 



in  the  window  channel).  With  this  classification, 17 of the  22 

profiles  were  radiometrically  cloudy.  We  are  currently  investi- 

gating  the  application  of  various  cloud  correction  algorithms  to 

these.data.  However,  with  a  very  simple  correction  method, 

namely,  no  correction  at  all,  the  upper  two  channels  can  yield 

useful  retrieval.  Examples  of  retrievals  obtained  during  cloudy 

conditions  are  shown  in  Figs.  20  and  21,  and  the  statistical  com- 

parison  of  all  22  profiles  is  given  in  Fig.  22.  Although  there  is 

a  substantial  reduction  in  variance  in  the  region  from 50 to  150 mb 

above  the  surface,  it  is  likely  that  cloud  correction  can  reduce 

this  variance  still  further. 

TErIPERATURE, C 

Fig. 20.  Example of t e m p e r a t u r e  profile retrieved f r o m   t w o  

oxygen channels d u r i n g   c l o u d y   c o n d i t i o n s .  
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Fig. 21. Example of temperature 

profile  retrieved  from two  oxygen  chan- 

ne ls  during cloudy conditions. 
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V. CONCLUSIONS 

Statistical  retrieval  algorithms  have  proven  to  be  quite  use- 

ful  in  ground-based  radiometric  sensing,  not  only  in  profile 

recovery,  but  in  making a reasonable a priori prediction  of 

measurement  achievability.  Thus,  we  feel  we  can  confidently  answer 

questions  relevant  to  system  design,  such  as 

a.  what  is  the  climatological  variation  of  retrieval  accuracy? 

b.  for a given  number  of  channels,  what  is  the  optimum  loca- 

tion  of  measurement  ordinates? 

c. what  noise  levels  are  required  to  give  specified  retrieval 

accuracies? 

We  are  currently  investigating  extensions  of  the  statistical  tech- 

nique  to  the  microwave  cloud  problem. 

SYMBOLS 

generalized  data  vector  (Eqs. (2) and ( 3 ) )  

extinction  coefficient  of  rain, km-l (Eq. (1) ) 

generalized  parameter  vector  (Eqs. (2) and ( 3 )  ) 

statistical  estimator  of  (Eqs. (2) and ( 3 ) )  

atmospheric  pressure, mb (Figs. 1, 3 and 4) 

relative  humidity  (Figs. 3 and 4) 

rain  rate, m/hr (Fig. 1) 

path  length, km from  receiver  to  emitting  volume 

(Eq- (2) 1 
covariance  matrix  of  random  vector q (Eq. ( 3 ) )  

absolute  temperature, K (Eq. (11, Figs. 1, 3 to 7) 

average  absolute  temperature  (Fig. 6) 

brightness  temperature, K (Eq. (1) , Figs. 3 and 4 )  

brightness  temperature, I( external  to  the  Earth's 

- 

atmosphere  (Eq. (1) ) 

variance  in  brightness  temperature, K (Figs. 3 and 4)  
2 
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V[Tb:P]  variance  in  brightness  temperature, ,K2 due  to  fluc- 

tuations  in  atmospheric  profile  parameter p (Figs. 3 

and 4) 

a absorption  coefficient, km-' (Eq. (1) , Fig. 1) 
V frequency, EHz '. (Eq. (1) 1. 

V 

' liquid 
'vapor 
(5 standard  deviation  (Fig.  5) 

(5 standard  deviation of instrumental  noise, K (Fig.  5) 

density  of  liquid  water,  g/m3  (Fig. 1) 

absolute  humidity,  g/m3  (Fig. 1) 

E 
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DISCUSSION 

S u s s k i n d :  When  you  do  your  analysis  of  the SCAMS data,  do  you 
subtract  or  do  you fi1:d any  bias  in  the  brightness  temperatures? 
I know  .Dave  Staelin  mentioned  there  was  the  possibility  of a 2O 
bias  in  the  measuremenks.  And  when  we  do  our'  analysis  we  have  to 
subtract  something  from  the  brightness  temperatures. 

W e s t w a t e r :  On  the  first  or  the  second  slide  that I showed,  we 
did  have a small  bias  in  the  upper  channel--a 54.5 channel  and 
this  was a bias  of  about  1.3O.  The  biases  in  the  other  two  chan- 
nels  were  essentially  entirely  below  the  noise  levels.  These  were 
in  the  order  of  about  2/10  of a degree.  Now  with  resepct  to  that 
question,  we  also  did  retrieval  with  subtracting a bias  and 
retrievals  with  just  the  raw  data.  And  for  the  temperature 
retrievals it made  very  little  difference  in  the RMS errors.  But 
there  is  somewhat  of a bias  in  this  in  the  data. 

S u s s k i n d :  I wonder  if I could  address  this  quickly  to  Dave  Staelin. 
You  mentioned  that  there  was a bias of approximately 2O with  the 
SCAMS  measurement. Is that  still  there?  Namely,  that  due  to 
instrument  calibration. 

S t a e l i n :  There  are  two  origins  for  bias  in  the  satellite  instru- 
ments.  One  is  the  instrument  calibration.  We  recalibrated  in 
orbit  using  NMC  data  yielding  corrections  on  the  order  of a degree 
or so. There  is  another  correction  in  the  case  of  our  data  from 
both  the  Nimbus 5 and 6 satellites,  which I did  not  discuss,  and 
that  is  the  transmittances.  Either  they  have  systematic  errors 
which  are  larger  than-  anything  that  has  been  indicated  in  the 
laboratory  spectroscope  data, to.date, or  the  radiosondes  have 
systematic  errors  which  are  larger  than  their  manufacturer  would 
probably  like  to  accept.  This  is  still a residual  effect  on  the 
order  of  one  or  two  degrees.  But  we  have  yet  to  track  down  its 
origin.  It  can  be  removed  empirically  and  is  not a problem  now. 

S u s s k i n d :  We  do  find  roughly a systematic  difference  between 
the  observations  and  our  ability  to  calculate  them  of  approximately 
2O. It's  hard  to  tell  if  it  is  in  the  measurement  or  in  our 
ability  to  calculatc  them. 

Wes twa ter :  There  is  one  other  parameter  in  the  Rosencrantz  theory 
that  is  quite  difficult  to  measure  by  Liebe's  laboratory  dis- 
persion  technique.  This  does  not  affect  the  calculated  radiances 
at  the  strongly  attenuating  frequencies.  However,  at a frequency 
of around 50 GHz  or 52 GHz,they  are  much  more  sensitive  to  this 
parameter  that  was  not  determined  well  from  Liebe's  measurements. 
In  our  calculations,  we  used  the  value  of  the  nonresonant  param- 
eter  that  was  given  by  Rosencrantz  himself  and  it  seemed  to  give 
a much  better  agreement  with  our  measurements. 
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F l e m i n g :  Would  you  care  to  comment on just  how  you  adjust  for 
clouds  when  you  sense  them? 

W e s t w a t e r :  The  technique  that  we  originally  tried  was  to  estimate 
the  equivalent  clear  air  brightness  from  the  entire  set  of  radiance 
observations  and  then  use  the  equivalent  clear  brightness  in 
retrieval.  However,  we  ran  into  difficulties  in  applying  this 
technique  to  the 52.8 GHz channel, so that  the  retrievals  you  saw 
were  uncorrected  brightness  measurements  at 53.8 and 55.45 GHz. 
We  are  still  trying  to  unscramble  the  eggs  again  and  what  has 
happened  to  the  cloud  correction  at  the  lower  attenuating  oxygen 
channel. 

Fraser:  Perhaps I misunderstood  your  last  slide. I understood 
you  to  say  that  you  were  quite  pleased  with  the  water  vapor 
retrieval.  But,  as I read  the  last  slide,  the  theoretical  and 
the  experimental  standard  deviations,  which I interpret  as  devia- 
tions  in  the  radiosondes  observations,  except  for 50 to 70 milli- 
bars'above  the  ground,  were  essentially  the  same. If they  are, 
then  why  are  you so pleased  with  experimental  data? 

W e s t w a t e r :  The  slide I showed  at  the  end  was  the  clear  air  data 
that  was  taken  in  March.  And  at  least  the  total  integrated  water 
contents  agreed  quite  well  with  that  estimated  by  the  radiosondes. 
However,  in  the  period  in  July  we  did  not  obtain  adequate  agree- 
ment,  primarily  because  of  the  cloud  correction  difficulties'  that 
I mentioned  before.  One  of  the  reasons I am  really  pleased  with 
the  data  is  we  really  expected  to  .get  one  parameter  and  one  param- 
eter  alone.  That  would  just  be  the  total  integrated  water  con- 
tent.  The  amount  of  structure  shown  in  the  retrievals  was an 
order  of  magnitude  greater  than  anything I would  have  expected  or 
that  anyone  would  have  expected  from a weighting  function  which  is 
essentially  constant  with  altitude.  There  is  very  little  structure 
in  the  weighting  function  itself. 
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INVERSION  METHODS IN TEMPERATURE AND AEROSOL 

REMOTE  SOUNDING: THEIR COMMONALITY AND 

DIFFERENCES, AND SOME UMEXPLORED 

APPROACHES 

Alain L. Fymat 
Jet Propulsion Laboratory 

Cali fornia  Inst i tute   of  Technology 

Departing from  conventional  research l i n e s ,  this paper 
considers in   paral le l   the  two remote sensing problems o f  
temperature pro f i l ing  and aerosol  characterization (complex 
refract ive   index,   s ize   dis tr ibut ion) .  These  problems are 
formally  identical and d i f f e r  only  ' in  the  explicit  form  of 
the source function which, for  aerosols,  includes  contribu- 
t ions from  both  single and multiple  scattering  processes. 
The functional dependence on the  desired  atmospheric param- 
e ters ,  however, i s  considerably more complex in   t he  case o f  
aerosols. Both problems are essentially  nonlinear. However, 
when the  observables  are  the  spectral  extinction or the 
single  scattering  of  the source  radiation,  the  associated 
problem i s  completely analogous to  the  linearized tempera- 
ture  inversion problem; viz .   the   solut ion  of  a f irs t -k ind 
Fredholm integral  equation mus t  be obtained. Four questions 
attach  to such  an equation:  existence,  uniqueness, s t a b i l i t y  
and construction  of  the  solution, which a r e  a l l  analyzed. 
Methods for  obtaining  the  solution of the  l inear problem are 
classified  following  three main categories (i) derivation  of 
properties  that a l l  solutions s a t i s f y ,  which must then be 
properties  of  the a c t u a l  solution; (ii) regularization  of 
the ill-posed problem; and (iii) d a t a  changes within  their 
domain of   uncertainty   in  order t o  avoid the  basic   instabi l i ty .  
A number o f  unexplored methods (e-g.,  reduction  to a second- 
kind  equation,  singular  value and other  decompositions, 
invariant imbedding, e tc . )  are  indicated.  Solutions  of  the 
nonlinear problem are  also  c lassi f ied.  L a s t l y ,  a two-step 
strategy i s  proposed for  retrieving f i r s t  the complex refrac- 
t ive   index  of   aerosols ,   in  a manner t h a t  i s  essentially 
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independent of   their   s ize   dis tr ibut ion,  and then  the  size 
d i s t r ibu t ion   i t s e l f .  The f i r s t  step  involves  the  inversion 
of  spectral  extinction  ratios  using  the  author's  Minimization 
Search Method, while  the second s tep   res t s  on  an analytical 
integral  transform  of l i g h t  scattered  within a narrow for-  
ward cone. 

I. INTRODUCTION 

Vertical  temperature  profiling  and  aerosol  microstructure 

reconstruction  have  generally  formed  two  separate  branches  of 

research  in  remote  sensing  theory.  This  separation  also  exists  in 

the  retrievals  of  the  constant  concentration  of  thermally  active 

gases  and  the  complex  refractive  index  of  aerosols.  While  in  each 

case of these  two  sikuations,  the  underlying  physical  processes 

are  certainly  different,  the  corresponding  mathematical  inversion 

problems  are  nevertheless  very  similar.  Thus,  a  greater  cross- 

fertilization  between  these  two  traditionally  divided  activities 

can  only  result  in  advances  in  the  solutions  to  these  problems. 

In  fact,  one  should  proceed  further  and  even  explore  whether  the 

physical  basis  in  one  area  can  be  used  advantageously  in  the  other 

area.  For  example,  measurement  of  the  in-  and  out-of-band  com- 

ponents  of  Rayleigh  scattering  by  an  atmospheric  absorber  of  known 

density  such  as 0 2 ,  C02, can  provide  the  altitude  distribution of 

molecular  absorption  fromjwhich  the  temperature  profile  can  sub- 

sequently  be  recovered.  Likewise,  Mie  scattering  by  aerosol  strati- 

fications  can  locate  the  altitudes of temperature  inversions 

trapping  these  particulates.  Information  derived  from  these  and 

similar  scpttering  techniques  can  be  used  to  improve  temperature 

retrievals  in  the  same  way  as  temperature  and  gaseous  composition 

determinations  can  help  in  the  investigation  of  aerosols. 

The  aim of this  article is to  set  forth  the  commonality  and 

differences  between  the  methodologies  that  have  been  developed,  or 

that  can  be  employed,  in  the  remote  sounding  of  temperature  and 

aerosols.  The  following  section  provides  the  equations of remote 

sene.'ng,  appropriate  for  a  variety  of  viewing  geometries,  in  both 
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t h e i r   d i f f e r e n t i a l  and integral   formulat ions,   and  expressions  for  

the   in te rna l   and   ex terna l   f ie ld   sources .   Sec t ion  I11 formulates   the 

temperature  sounding  problem i n   t h e   i n f r a r e d  and  microwave regions 

of  the  spectrum  with  analyses  of  the  weighting  functions  and  of  the 

nature  of  the  associated  mathematical  problem.  Section I V  considers 

the  particulate  sounding  problem for r e f l ec t ed ,   d i r ec t ly   and   d i f -  

fuse ly   t ransmi t ted   rad ia t ion  a t  low and l a rge   s ca t t e r ing   ang le s ,  

and  provides a tabular   ana lys i s   o f   the  na'Lure of   the  associated 

inverse  problems.  Section V analyzes  the  nature  of  the  problem  of 

f inding a s o l u t i o n   t o   l i n e a r   f i r s t - k i n d  Fredholm in tegra l   equa t ions  

i n  terms  of   exis tence,   uniqueness ,   s tabi l i ty ,   and  construct ion  of  

the  solut ion.  It a lso   p rovides  a p re l imina ry   c l a s s i f i ca t ion   o f  

methods  of solution  of  such  equations.  The corresponding  c lass i f i -  

cat ion  for   nonl inear  methods i s  g iven   in   Sec t ion  V I .  The f i n a l  

section  proposes a two-step  strategy  developed by the  author   for  

solving  the  particulate  sounding  problem.  There,  the complex re f rac-  

t ive  index would  be r e t r i eved  from spec t ra l   ex t inc t ion   ra t ios   whi le  

t h e   p a r t i c l e   s i z e   d i s t r i b u t i o n  would be  reconstructed from angular 

forwardly  scat tered  radiances a t  a given  wavelength. 

11. EQUATIONS OF REMOTE SENSING 

Consider   the  s i tuat ion  represented by Fig. 1: a s l a b  atmos- 

phere bounded  between a l t i t u d e s  z and z 2 ,  or   op t ica l   depths ,  

and 0, respec t ive ly .  Any po in t  P in  the  atmosphere i s  loca ted   i n  

a Cartesian  frame  of  reference by i ts  spherical   coordinates:  r = 

rad ius   vec tor ,  8 = zeni th   angle  measured from the  z-axis,  and 

$I = azimuth  angle  measured from the  x-axis. Upward d i r e c t i o n s  are 

denoted f2 E (a, B, y ) ;  l ikewise  downward d i r ec t ions  are represented 

by $- : (a, B, -y), where a = s i n  8 cos $, f3 = s i n  8 s i n  $ and 

y = cos 8 a re   d i rec t ion   cos ines .  The equations  of  remote  sensing 

are derived from the   r ad ia t ive   t r ans fe r   equa t ion  (RTE) expressing 

the  principle  of  energy  conservation  within an  elemental  atmospheric 

volume. They can  be  obtained  in   e i ther  a d i f f e r e n t i a l   o r   a n   i n t e -  

g r a l  form, as follows. 

1 T1 

-+ 

+-I- 
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R i (a,B,-Y) 

Fig. 1. I l lus t ra t ing   the  geometry for remote sensing. 

A. Differential  Formulation 

In  its  most  general  form,  the  monochromatic RTE at  frequency 

v for  either  upwelling  or  downwelling  radiation  is  written  as 

where  the  specific  intensity  (or  radiance) I, the  source-function 

J, and  the  volume  extinction  coefficient K are  all  functions  of 

location  and  direction:  F : F  (r; a) ,  F E I, 3, K. The  differen- 

tial  operator (52 V) is  specified  by  the  geometry  of  the atmos- 

phere;  various  relevant  expressions of this  operator  are smnarized 

in  Table 1. It  is  usually  assumed,that K is  either  directionally 

averaged  or  independent  of  direction.  The  same  assumption  is 

separately  valid  for  the  absorption  coefficient, kv, and  the 

scattering  coefficient, (5 the sum of  which  equals K. 

+ +  
+ +  

V I  
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TABLE 1 

~. 

1 a. 

1 b. 

Various Forms of thz Differential  Transfer 
Operator (52- V) f o r  Geometries of 

In teres t   to  Remote Sensing 

++ 

A T M O S P H E R I C   G E O M E T R Y  
~ ~. 

S P H E R I C A L  
( T W I L I G H T ,  
L I M B ,  
T E R M I N A T O R )  

( O R I G I N   A T  
E A R T H ' S  
C E N T E R   A N D  
2 P A R A L L E L  
T O   L O C A L  
V E R T  I C A L )  

S P H E R I C A L  
S Y M M E T R Y  
rajap, = a la@ : o )  

.. " 

A X I A L   S Y M M E T R Y  
( P  - 1) 

P L A N E - P A R A L L E L  
( e . g . ,  a l a x  = a / a y  = 0 1  

D I F F E R E N T I A L   T R A N S F E R   O P E R A T O R  
~~ " - .. . . . . 

* p -  a t - 3  I - ~ 2  
ar r ap 

2 f P d , * L  
ar r ap 

+ a r  

a 

t p L  
az 

Equation (1) is  to  be  solved  subject  to  appropriate  boundary 

conditions  on  the  radiation  field  at  the  top I-(z = z2 or T = 0) 

and  the  bottom I ( z  = z1 or T = T ~ )  of  the  atmospheric  slab. 

Depending  on  the  wavelength  region  utiliqed  and  on  assumptions  on 

the  problem,  Eq. (1) can  either  be a scalar  or a four-vector 

equation.  The  latter  situation  involves  Stokes'  representation 

of a light  vector,  but  it  may  be  noted  that  other  representations, 

such  as a four-coherency  vector  or a 2 x 2 Jones'  matrix,can  be 

used  as  well. In general, k, u and K are  taken  to  be  scalars.  In 

the  following  sections, we shall  limit  ourselves  to  the  case  of a 

plane-parallel  stratified  atmosphere  for  which  the  RTE  is simply 

+ 
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-.- ... . . . .. . . .. . . - . ". - . . . - .. . . ." . . . . . " .. . .. " - .. ... .. . " 

Alternatively,  introducing  the  normal  optical  thickness 

we  also  have 

(In  these  equations  and  in  the  following,  the  subscript v is 

dropped  for  convenience.  It  will,  however,  be  indicated  when  it 

occurs  for  .the  first  time.) 

B. Integral  Formulation 

The  integral  formulation  is  simply  obtained  by  formal  inte- 

gration  of  the RTE. For  example,  by  integration  of  Eq. (218 

which  provide  the  upward  and  downward  radiation  fields  at  any  arbi- 

trary  level T in  the  atmosphere.  The  first  term  on  the  right  side 

of  either  of  these  last  equations  represents  the  boundary  con- 

tribution  while  the  integral  term  provides  the  atmospheric  contri- 

bution  proper.  From  these  equations,  one  obtains  immediately  the 

field  emerging  from  the  top, I (0; Q ) ,  or reaching  the  bottom, 

I ( T ~ ;  a),  of  the  atmosphere.  In  particular,  for  an  infinitely 

+ -+ 
- + 

thick  medium ( T~ = m) , 
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C. Internal  and  External  Field  Sources 

The exp l i c i t   so lu t ion   o f   t he  RTE, i n   e i t h e r  i ts i n t e g r a l  o r  

its d i f f e r e n t i a l  form,  depends,  of  course,  on  assumptions on the  

na ture   o f   the   source   f ie lds   e i ther   impinging  on the atmosphere or 

originating  within  the  atmosphere  i tself .   Expressions  for  the 

source  function are summarized i n  T a b l e  2. I n   p a r t i c u l a r ,   t h e  

sca t te r ing   source . func t ion   for  a clear atmosphere is  

JNC , S E J(SS) + J ( M S )  

where I i s  the   inc ident   rad ia t ion ,  t the  transmission  function 

and P the  scat ter ing  phase  funct ion  (or   phase  matr ix   for  a l i g h t  

vector).  It  rece ives   cont r ibu t ions  from both  s ingle  (SS) and 

mult iple  (MS) scat ter ing  processes   in   the  a tmosphere  ( f i rs t   and 

second term, respec t ive ly ,   in   the   r igh t -hand  s ide  of the  equat ion) .  

The in tegra l   equa t ibn   sa t i s f ied  by J the  so-cal led  auxi l iary 

equation of rad ia t ive   t ransfer   for   the   source   func t ion ,  is  obtained 

by subs t i t u t ing  E q s .  (3a) and  (3b) in   the  second  term  in   the  r ight-  

hand side of Eq. ( 4 ) .  The kernel of these  equations is  a l i n e a r  

combination of the  scat ter ing  phase  funct ions  (or   phase  matr ices)  

for   gaseous  (superscr ipt   g)   and  par t iculate   (superscr ipt  p) con- 

t r i bu t ions .  

0 

NC,S' 

pV 
= a P' + (1 - a )Pp 

v v   v v  

where the  weight ,   cal led  turbidi ty   factor ,  is  given by 

(5 
P 

a =  V 
V (59 + .p 

V V 

For some gases,  it may be  necessary t o  take   in to   account   the i r  
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TABLE 2 

Source-Function  Expressions  Corresponding 
t o  Some Typical Atmospheric States* 

A T M O S P H E R I C   S T A T E  
~~ 

S O U R C E - F U N C T I O N   E X P R E S S I O N  
~- 

1. L O C A L   T H E R M O D Y N A M I C  

S C A T T E R I N G   N E G L E C T E D  
E Q U I L I B R I U M :  J N C ,   N S  - B, [T (P) ]  

2. L O C A L   T H E R M O D Y N A M I C  
E Q U I L I B R I U M :  
S C A T T E R I N G   I N C L U D E D  

J N c  = Zu J N c , s  + ( l -Gu) J N C .   N S  

I 2. L O C A L   T H E R M O D Y N A M I C  1 
E Q U I L I B R I U M :  
S C A T T E R I N G   I N C L U D E D  

J N c  = Zu J N c , s  + ( l -Gu) J N C .   N S  

3. P A R T L Y   O B S C U R E D   B Y  J P O  J o  + (l-N, , H A Z E  O R  C L O U D  No ( I N  I N F R A R E D )  

4. A N Y   A R B I T R A R Y  
C O M B I N A T I O N   O F  
P R E V I O U S   C A S E S  

L I N E A R   C O M B I N A T I O N  OF P R E V I O U S  
S O U R C E   F U N C T I O N   E X P R E S S I O N S  

nonsphericity;  in  this  case,  the  phase  function  is  that  corre- 

sponding  to  Rayleigh-Cabannes  scattering 

pg E P r  = b  P  R + (1 - bv)Pv I 
V v v  

itself a linear  combination  of  the  Rayleigh  phase  function  (super- 

script  R),  applicable  to  scattering  by  spherical  molecules,  and 

the  isotropic  (superscript I) phase  function.  For  continuum  fre- 

quencies, v = f, the  weight  bf = 2(1 - 6 ) / ( 2  + 61, where 6 is  the 

so-called  gaseous  depolarization  factor  (e.g., b = 0 for  isotropic 

scatterers;  bf = 1.0 for  Rayleigh  (spherical)  particles  or  mole- 

cules; b = 0.4 for  rod-like  scatterers;  and 0.4 < bf < 1.0 for  all 

f 

f 
shapes  between a rod  and a sphere)  while  for  spectral  line  fre- 

quencies, v = 2 ,  it is the  well-known  Hamilton's  coefficient  for 
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resonantly  fluorescent  line  scattering  (e.g., bR = 0.5 for H-Lya ) . 
If  the  particulates  are  spherical,  Pp  is  provided  by  the  Mie 

expressions.  denote  the  elements  of  matrix P, i, j = 1 to 

4, we  have  the  following  normalization  condition 

If  Pij 
v 

% 

(Pll  is  none  other  than  the  phase  function.) 

(or  phase  matrix)  also  satisfies a number  of 

metry  relations  (not  given  here). 

The  equations  summarized so far  provide 

+. 
R)dw = 1 

The  phase function- 

reciprocity  and sym- 

the  necessary  formal- 

ism  for  remote  sensing  from  above  the  atmosphere  or  from  the  sur- 

face  and  for  looking  at  arbitrary  targets  along  arbitrary  directions. 

They  include  (or  can  be  used  to  provide)  equations  appropriate  for 

nadir  or  zenith  viewing,  twilight,  limb,  and  terminator  scans. 

111.  TEMPERATURE  SOUNDING  PROBLEM 

The  basic  assumptions  are  here:  plane-parallel  atmosphere, 

in  Local  Thermodynamic  Equilibrium  (LTE),  free  of  clouds  and 

aerosols;  negligible  gaseous  scattering;  negligible  surface  reflec- 

tion  of  downward  atmospheric  radiation;  and  known  active  gases. 

The  following  paragraphs  provide  the  relevant  equations  for  the 

thermal  and  the  microwave  sounding  of  the  temperature  structure. 

For  simplicity,  and  with  the  exception  of  some  remarks  on  the  limb 

geometry,  we  shall  essentially  limit  these  derivations  to  nadir 

and  zenith  viewing  geometries. 

A. Thermal  Sounding 

The  relevant  equations,  in  differential  form,  are  obtained 

simply  from  the  derivations  of  the  previous  section 
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where k' ( z )  = k (2) /p ( z )  is  the  mass  absorption  coefficient,  and p 

is the  absorbing  gas  density. It is  easy  to  convert  this  equation 

from  an  altitude, z ,  to a pressure  variable, p, by  use of the 

hydrostatic  equation 

where w is  the  mass  mixing  ratio  of  the  absorbing  gas,  and g is  the 

acceleration  of  gravity.  Equation (9) must  be  solved  subject  to 

the  boundary  conditions: 

I+(o; 11) = B[T(O)] (Nadir  viewing) 

I-(;; !A) E 0 (Zenith  viewing) 

where  is  the  altitude  of  the  atmospheric  top  (or  of  the  sensing 

platform) . Integrations  of  Eqs . (9) and (10) , or  use  of  Eqs. ( 3 )  

and (lo), yields  straightforwardly 

where Y p,  log p, ... is a single-valued  function Of the  Pres- 
sure,  and 

is  the  slant  transmission  function  between  levels y1 and y2; its 

derivative  is  now  commonly  referred  to  as  the  weighting  function. 
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B. Microwave  Sounding 

Equations (9) and (11) are  still  valid  in  this  case,  but 

Planck's  function  can  be  replaced  by  its  approximation  provided 

by  the  Rayleigh-Jeans  formula. 

C. Properties  of  the  Weighting  Functions 

The CO transmittances  and  weighting  functions  corresponding 2 
to  the  National  Oceanic  and  Atmospheric  Administration's NOAA 2- 

Vertical  Temperature  Profile  Radiometer  are  illustrated  in  Fig. 2. 

The  following  general  properties  of  the  weighting  functions  can  be 

listed: 

1. For  both  infrared  (IR)  and  microwave (MW) radiation,  they 

are  weak  functions  of  the  temperature,  mainly  through  line  broad- 

ening. 

2. Each  function  covers a finite,  although  extensive,  portion 

of the  atmosphere  and  exhibits a generally  broad  peak.  This. 

results  in  low  vertical  resolution  of  the  retrieved  temperature 

profile,  i.e.,  the  fine  scale  structure  cannot  be  recovered.  It 

may  be  noted,  however,  that  the  weighting  functions  corresponding 

to  limb  observations  can  be  much  narrower,  thus  permitting a finer 

resolution  than  with  other  geometries. 

3 .  Some  functions  can  exhibit  several  maxima  which  result  in 

inversion  ambiguities. To avoid  this  situation,  it  is  best  to  dis- 

card  such  functions. 

4. The  functions  are  overlapping,  i.e.,  they  are  mutually 

correlated,  the  degree  of  correlation  increasing  with  the  number 

of  channels  (frequency  or  tangent  height).  Methods  for  retrieving 

the  temperature  profile  will  later  be  described.  In  those  methods 

where  the  integral  remote  sensing  equation  is  approximated  by a 

linear  algebraic  system,  this  correlation  manifests  itself  by  the 

linear  dependence  (ill-conditioning)  of  the  column  vectors of the 

operator  matrix.  As  the  number  of  channels  is  increased, so does 

the  number  of  column  vectors  and  their  linear  dependence. 
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C02 TRANSMITTANCES C02 WEIGHTING  FUNCTIONS 

F i g .  2 .  NOAA 2 - V e r t i c a l   T e m p e r a t u r e  Prof i le  Radiometer  

(from R e f .  1 ) .  (Note: O n l y  center f r e q u e n c i e s   a r e  l i s ted.  Fi l ter  

b a n d p a s s e s   a t   h a l f - w i d t h s   a r e   p r o v i d e d  within p a r e n t h e s e s  i n  the 

insert. ) (1 b a r  = 100 kPa .) 

D. Nature  of  the  Mathematical  Problem 

The  remote  sensing  equations, Eqs. (9) or (111, are  essentially 

nonlinear  in  the  temperature  profile.  The  sources  of  nonlinearities 

are  summarized  as  follows: 

1. Temperature  dependence  of  the  transmission  function:  weak 

in  all  wavelength  regions  of  interest. 

2. Frequency  dependence  of  Planck's  function:  weak  within a 

single  IR  band,  stronger  when  several  IR  bands  are  considered 

together;  none  in  the MW region. 

3 .  Scattering  by  gases  and  particulates:  weak  (usually  not 

considered) . 
4. Surface  reflection  effects:  weak  (usually  not  considered). 
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5 .  Presence  of  clouds  and/or  hazes:  can  be  large. 

6. Mathematical  nonlinearities  (constraints,  etc.): cam;be 

large. 

However,  when  utilizing a single  IR  band  or  in  the MW region,  it 

is  possible  to  separate  the  frequency  and  temperature  dependences 

of  Planck's  function  by  using a variety  of  approximations.  In  this 

case,  the  integral  remote  sensing  equation  can  be  written  as  the 

first-kind  Fredholm  integral  equation: 

where v are  the n sounding  frequencies,  the  kernel K is  the  trans- 

mission  function  (since  it  exhibits a much  weaker  variation  with 

T than  does  B), B stands  for  the  T-term  in  Planck's  function,  and 

j 

Measprement ( -  Surface  term) 
3 = v-term  in  Planck's  function 

Prior  to  reviewing  the  methods  of  solution  of  the  temperature 

sounding  problem,  we  shall  first  analyze  the  particulate  sounding 

problem  in  order  to  bring  into  more  evidence  the  commonality  and 

differences  between  these  two  problems. 

IV. PARTICULATE SOUNDING PROBLEM 

The  basic  assumptions  for  this  problem  are:  plane-parallel 

atmosphere,  completely  hazy  or  c1oudy;known  contributions  from 

gases;  no  thermal  radiation  effects;  and  known  surface  reflection 

effects. 

A. Reflected  and  Transmitted  Radiation 

The  form  of  the  remote  sensing  equations  used  in  this  case  is 

where 

4 4 1  



is  provided  by  Eq. ( 4 ) ,  and  the  boundary  conditions  are 

+ -+ I ( -rl ; $2) = Prescribed  surface 
Feflection.  Reflection 

(15) I-( 0; 6) = Radiation  source 
strength  Transmission 

The  corresponding  integral  formulations  are  as  given  in  Eqs.(3a)-(3c) - 
For  transmitted  radiation,  it  is  interesting  to  note  that  it 

is  possible  to  separate  the  direct  from  the  diffuse  component.  In 

the  former  case,  the  corresponding  spectral  extinction  measurements 

are  performed  by  pointing  in  the  source  direction.  In  this  direc- 

tion,  direct  radiation  is  predominant,  and  the  extinction  process 

conserves  any  incident  polarization.  Thus,  while  these  measure- 

ments  are  restricted  to a single  direction  and  polarization  infor- 

mation  is  lost,  nevertheless,  the  complexity of the  corresponding 

mathematical  problem  is  considerably  reduced.  The  equation  for 

this  case  is  obtained  by  letting J = 0 since  there  is  no  self- 

illumination of the  medium  by  scattering,  and 

a strictly  scalar  problem  irrespective  of  the  initial  polarization. 

Away  from  this  direction,  direct  radiation  vanishes,  and  Eq.  (3b) I 

or  Eq. (14) with a null  boundary  condition,  yields 

a vector  problem  if  polarization  is  considered. 

The  problem  unknowns  are,  in  the  macroscale:  the  volume 

absorption  and  scattering  coefficients  and  their  vertical  profiles 

(from  which  the  scattering,  absorption,  and  total  optical  depths 

at  any  level  in  the  atmosphere,  the  corresponding  optical  thick- 

nesses  of  the  atmosphere,  and  the  single  scattering  albedo  and  its 
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vertical  profile  can  be  obtained),  and  the  scattering  phase-function 

(- matrix).  If  the  absorption  and  scattering  coefficients  are 

known,  then  it  is  sufficient  to  determine  the  number  density  pro- 

file  in  place of the  corresponding  volume  coefficients.  In  the 

microscale,  these  parameters  involve  the  unknown  complex  refrac- 

tive  index,  the  particle  size  distribution,  and  their  vertical  pro- 

files. 

B. Spectral  Extinction 

Assuming  that  the  particulates  are  spheres, Eq. (16a)  becomes 

.W 

where k = 2 ~ / h  is  the  wavenumber, x = 2.rrr/A is  the  size parmeter, 

r = radius , mr  and m are,  respectively,  the  real  and  imaginary 

components  of  the  refractive  index,  n(x)  is  the  size  distribution, 

and  Qext  is  the  Mie  efficiency  factor  for  extinction 

i 

4 
- Re ( S ( 0 ) )  = - (2n + l)Re  (an + bn) 2 
" 

Qext 2 2 
X X n = l  

In  this  last  expression, S ( 0 )  is  the  Mie  complex  scattering 

amplitude  function  in  the  forward  scattering  direction,  and a and 

b are  the  well-known  Mie  coefficients.  For I m - 1 I << 1 , 
van  de  Hulst  has  provided  the  following  approximation  to Q - 

n 

n 

ext 

Q, = 4 Re (K(ip + p tan f3)} (18a) 

where 

l e  e - 1  
2 W 

-W  -W 
K ( w )  = - + - + 

W 
2 
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p = 2x I m - 1 I , and  tan 6 = mi/  (mr - 1) . The  approximation  in Eq. (18a) 

is  found  in  practice  to  apply  well  for  1.33 < m < 1.5. For 

1.0 < m < 1.5  and 0.05 5 m S 0.25,  Deirmendjian  has  provided  the 

following.ad hoc extension  of Q - H- 

r 

r i 

QD = (1 + D)QH  (18b) 

where D is a known  constant. 

If m and  mi  are  known,  or  constant  over  the  wavelength  range r 
of  the  measurements,  or  else  slowly  varying  within  this  range, 

Eq. (16c)  can  be  written  as a linear  first-kind  Fredholm  integral 

equation  in  the  size  distribution: 

E ( X . )  = K ( A j ;  x)N(x)dx (j = 1, 2, ..., n)  (19) 
3 

where K : Q (or  x2Q ) and N = x2n(x)  [or  n(x) 3 .  ext  ext 

C. Single  Scattering  in a Homogeneous  Slab 

The  corresponding  vector  equations,  obtained  by  canceling 

J(MS) arei respectively,  on  reflection  and  transmission: 

where 0 is  the  scattering  angle,  and 
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Further,  for T~ << 1, f = g N -rl/p, G T , =  T ( = scattering  optical 

thickness) , and  Eqs.  (20a)  and  (20b)  degenerate  to  the  single 
expression 

sc 

For  incident  light  that  is  either  natural  or  fully  plane-polarized, 

Eq.  (21)  can  be  reduced  to  a  scalar  one.  If  the  phase-function 

(- matrix)  is  known,  or  modeled,  this  equation  can  be  used  €or 

retrieving T . Alternatively,  if T is  known  independently,  and 

if  m  is  also  known,  the  same  equation  can  be  written  as  a  first 

kind  Fredholm  integral  equation  in  the  size  distribution 

sc  sc 

where P has  different  expressions  depending  on  the  incident  polar- 

ization. 

D. Near-Forward  Scattering 

Let R be  the  length of the  scattering  medium.  Since  this 

medium  is  hornogeneous,~ = OR. By  introducing  the  scattering  dia- 

gram  F = UP, Eq. (22a)  can  be  written  as 
sc 

(22b) 

For  incizent  light  that  is  plane-polarized  either  along  the  vertical 

or  the  horizontal,  the  two  equations  (22b)  for  this  case  degenerate 

to  a  single  equation  for  all  scattering  angles.  On  the  other  hand, 

for  natural  light,  this is the  case  only  at  forward  scattering 

angles.  In  this  latter  case,  in  the  Kirchhoff  approximation  to 

Fraunhoffer  diffraction, 

X ~ J ~  (x  sin 0 )  
F(0;  x) = 1 

k3sin20 
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A considerably  better  approximation,  provided  by  the  works of 

Penner,  and  Shifrin  and  Punina, is. 

* Qext 
F (0; x) = - F40; x) 4 

This  approximation  is  valid  for 0 loo  and x 2 5. A detailed 

analysis of its  accuracy  (which  is  actually  quite  high)  for a set 

of  refractive  indices  is  not  available.  With Eq. (23b), Eq. (22b) 

becomes 

max 

- * 
10 - J1 (x  sin  0)x2n  (x)dx 

where  n*  (x) = (1/4)Q2  n(x) , and J1 is  Bessel  function  of  the  first 
kind  and  order  unity. 

ext 

E. Observables  and  Corresponding  Mathematical  Problems  for 
Reconstruction  of  Particle  Size  Distribution 

The  situation  is  summarized  in  Fig. 3, which  is  self- 

explanatory.  It  may  be  noted,  however,  that  under  certain  approxi- 

mations,  the  inverse  .problem  for  the  individual  spectral  extinctions, 

and  for  the  near-forward  radiances  arising  from  single  scattering, 

can  be  solved  analytically.  For  multiple  scattering,  for  spectral 

extinction  ratios,  and  for  single  scattering  radiance  and  polar- 

ization  ratios,  the  problem  is  amenable  to a minimization  search. 

In  all  other  cases,  the  problem  is  that  of  solving a first-kind 

Fredholm  integral  equation.  Since  the  latter  equation  is  of  funda- 

mental  importance  in  both  the  temperature  and  the  particulate 

sounding  problem,  we  shall  now  turn  to  its  analysis. 

V. ON  THE  INVERSION  OF  FIRST-KIND  FRFDHOLM  INTEGRAL  EQUATIONS 

Consider  the  first-kind  equation: 

f(x) = A(x,  y)g(y)dy (X E x) 1 
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EXTINCTION 
I e = 00: SEVERAL X) I 
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SINGLE  SCAl lERING ____- I  I (SEVERALBANOX 1 f 

I N D I V I D U A L   I N D I V I D U A L  NEAR- RADIANCE  AND 

ARBITRARY8  ARBITRARY8  RADIANCES  RATIOS 
POLARIZATION RAT1 OS I N D I V I D U A L  RADIANCES:  POLARIZATIONS:  FORWARD 

TRANSFORM 

F i g .  3. Observa t ions   and   correspond ing   ma themat i ca l   p rob lems  

f o r  r e c o n s t r u c t i o n  o f  p a r t i c l e  s ize  d i s t r i b u t i o n   ( f r o m  ‘ R e f .  2 ) .  

There  are  four  important  questions  bearing  on  the  solution of such 

an  equation  (Ref. 3 ) .  

A.  Questions  of  Existence,  Uniqueness,  Stability  and  Construction 

Existence. What  conditions  must  be  placed  upon f to  ensure 

that  there  is  a  corresponding  g? 

Uniqueness .  Given  that  a  solution g1 exists,  are  there  any 

others,  g2, g3, etc.  also  satisfying  the  basic  equation? 

Alternatively,  are  there  any  nontrivial  solutions  h(y)  to  the 

equation 

A(x,  y)h(y)dy = 0 

If  the  answer  is  negative,  then  g(y)  is  unique.  Otherwise,  h E H 

(annihilator  of  A),  and  the  knowledge of f(x)  can  tell  nothing 

whatsoever  about  those  parts  of  g(y)  that  belong  to H; these  must 
be  deduced  from  information  other  than  that  contained  in  f(x). 

S t a b i l i t y .  Granted  existence  and  uniqueness,  does  g(y)  depend 

continuously  on  f(x)?  Alternatively,  does  the  closeness  of  the 
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computed E(x) to  the  measured 2 (x) entail a similar  closeness  of 
the  inferred  g(y)  to  the  actual  g(y) ? 

f(x) = F(x) 4 
CLOSE 

If  the  answer  is  in  the  affirmative,  then  g(y)  is  stable;  other- 

wise  g(y)  is  unstable.  Physically,  instability  is  the  case  every 

time  the  kernel  tends  to  smooth  the  behavior  of  the  required  func- 

tion  for  all  values  of  the  parameter x. Under  certain  circumstances, 

the  linearized  temperature  sounding  problem  for a thick  atmosphere 

can  be  reduced  to  the  convolution  problem  (Ref. 4) 

The  universal  kernel  in  this  equation is plottea  in  Fiq.  4(ai. 

The  Fourier  transform  of Eq.. (26) is 

F(k) = A(k)*G(k) (2%) 

a (-y) = exp [-(-y) - exp +y)] 
I 

F i g .  4a. The u n i v e r s a l   w e i g h t i n g   f u n c t i o n  (from R e f .  4 ) .  
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The  filtering  function  A(k)  is  drawn  in  Fig.  4(b).  It  corresponds 

to a low-pass  filter.  It  is  seen  that A(k) drops  very  sharply 

with  increasing k, e.g.,  for k = 7 it  drops  by  four  orders  of  mag- 

nitude.  After a certain  k-value,  the  value  of  A(k)  may  drop  below 

the  experiment  noise. . In  this  case,  the  inversion  would  correspond 

to  the  noise  rather  than  to  the  signal.  This  illustrates  the  neces- 

sity  of  applying a constraint  in  order  to  limit  the  number  of k 

values  that  can  be  admitted.  This  number  is  also  intimately  con- 

nected  with  the  information  content  of  the  measurements  under  con- 

sideration. 

Construction. Granted  existence  and  uniqueness,  can a pro- 

cedure  be  found  which  will  generate  g(y)  from  f(x)  to  any  requested 

finite  accuracy  in a finite  number  of  steps? 

CUT-OFF FOR 
HIGH FREQUENCIES 

A (k) 
F i g .  4b. Amplitude of  the Fourier  spectrum A(k) of   the 

weighting  function  (from  Ref. 4) . 

B. A Preliminary  Classification  of  Methods  of  Solution 

Since  the  actual  solution  cannot  be  recovered  from  the  measure- 

ments,  there  are  three  courses  of  action  that  are  left  open: 

1.  Derivation  of  properties  that  all  solutions  share,  which 

must  then  be  properties  of  the  true  solution. 

2. Introduction of assumptions  (physical,  mathematical) 
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about  the  solution  to  restrict  the  class  of  admissible  solutions. 

3 .  Investigation of alternative  concepts  or  conditions. 

This  is  the  basis  of  the  classification  provided  in  Fig. 5 

for  retrieval of the  temperature  profile,  and  in  Fig. 6 for the 

reconstruction  of  the  harticle  size  distribution. A review of the 

various  methods  there  listed  has  been  provided  elsewhere  (Ref. 5.). 

A number  of  spectral  expansion  and  least-squares  techniques  (e.g., 

truncated  singular  value  decomposition,  stepwise  regression, 

Cholesky  decomposition,  and  modified  Gram-Schmidt  orthogonalization), 

the  reduction  to a second-kind  Fredholm  integral  equation,  invar- 

iant  imbedding,  etc.,  remain  to  be  explored,  or  have  not  been  suf- 

ficiently  explored.  Likewise,  alternative  or  complementary  con- 

cepts,  such  as  the  scattering  processes  discussed  in  the  Introduction 

section,  need  to  be  further  investigated.  In  the  particulate 

sounding  problem,  the  climatological  methods  are  not  applicable, 

and  the  analytical  methods  are  integral  transforms. 

These  tabulations  of  methods  will  be  updated  as  new  con- 

cepts  and  methods  are  developed  for  the  solution  of  the  two  prob- 

lems  Of  temperature  profile  and  particle  size  distribution  recon- 

structions. 

VI. A PRELIMINARY  CLASSIFIGATION OF NONLINEAR  SOLUTION METHODS 

The  methods of solution  (Fig. 7) are  here  necessarily  itera- 

tive.  For  the  temperature  sounding  problem,  Newtonian  iteration, 

relaxation,  and  Marquardt  algorithm  have  been  used. A number  of 

other  nonlinear  least-squares  and  search  methods  are  available  for 

study.  The  same  conclusion  applies  to  the  size  distribution  prob- 

lem  where  only  the  minimization  search  technique  and  some  of  its 

variants  have  been  used. 
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F i g .  5. C l a s s i f i c a t i o n  for r e t r i e v a l  of t e m p e r a t u r e   p r o f i l e  

(From R e f .  5 )  . 

VII. A STRATEGY FOR THE  PARTICULATE  SOUNDING  PROBLEM 

This  is  a  two-step  approach  in  which  the  complex  refractive 

index  is  first  determined,  independently  of  the  particle  size 

distribution,  from  the  inversion  of  spectral  transmission  ratios 

in  a  narrow  wavelength  range.  This  parameter  known,  the  particle 

size  distribution  is  then  reconstructed  from  an  analytical  inver- 

sion  of  single  scattering  radiances  in  a  narrow  forward  cone. 

Whenever  the  conditions  attending  single  scattering  are  no  longer 

valid,  the  single  scattering  solution  can  be  iterated  using  a 

number  of  schemes  to  provide  the  multiple  scattering  solution. 

The  approach  is  well  adapted  to  a  limb  scanning  experiment  in  order 

to  also  retrieve  the  vertical  profiles of the  unknown  parameters. 
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p r o f i l e .  
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A. Retr ieval   of   the  Complex Refractive  Index:  Spectral   Extinction 
Ratio Approach 

Return t o  Eq. (16c)  providing  the  expression of t h e   s p e c t r a l  

extinction,  again  under  the  assumption  that   the  gaseous  contri-  

bution ( T ~ )  is  known. Figure 8 i l l u s t r a t e s   t h e   v a r i a t i o n s   o f   t h e  

ex t inc t ion   e f f ic iency   fac tor  as a func t ion   of   par t ic le   rad ius   for  

several wavelengths. A t  any  wavelength,  the main con t r ibu t ion   t o  

the  measurement E(A) (see Eq. (16c) comes from the  first s t rongly  

marked  peak  of the  corresponding  curve.   If   the  wavelength  inter-  

val considered i s  s u f f i c i e n t l y  narrow, then Q i s  e s s e n t i a l l y  

independent  of  particle  size.  For  example,  for  wavelengths 

extending  from 0.4 t o  0.9 pm, t he   con t r ibu t ion   t o   so l a r   ex t inc t ion  

measurements o r ig ina t e s  from p a r t i c l e s   i n   t h e   s i z e   r a n g e  0.3 t o  

0.6 pm. This   l a t te r   range  would  be further  reduced if the  wave- 

l eng th   i n t e rva l  were smaller. This  observation w a s  used   for  

developing a method o f   r e t r i ev ing   t he  complex refract ive  index  of  

aerosols   in  a manner t h a t  is essent ia l ly   independent   o f   s ize   d i s -  

t r i bu t ion .  The  same procedure  can be appl ied   to  a set  of wave- 

l eng th   i n t e rva l s   i n   o rde r   t o   ob ta in   t he  spectrum of this   parameter .  

A complete  description  of  the method has  been  provided  elsewhere 

(Ref. 6 ) .  Br ie f ly ,  w e  cons ide r   t he   s e t   o f   spec t r a l   r a t io s :  

g 

e x t  

where A and A are   any two wavelengths  of  the  ensemble  of N wave- 

lengths  recorded, A being  f ixed  for  any p a r t i c u l a r  set. Obviously, 

there  are N such sets. For s impl ic i ty ,  w e  s h a l l  model t h e   s i z e  

d i s t r i b u t i o n  by the  gamma funct ion 

U V 

V 

n (x)  = Constant x e a - Bx/k 

where t h e  two d i s t r i b u t i o n  parameters a and B are expressed   in  

terms of moments of n ( x ) .  Such a model,  however, is  ne i the r  

required  nor   necessary  for   one can gene ra t e   t he   ac tua l   d i s t r ibu t ion  

from some i n i t i a l  guess, n (O) ( x ) ,  by us ing   t he   r e l a t ion  
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F i g .  8 .  Extinction e f f i c i e n c y   f a c t o r   a s  a f u n c t i o n  o f  

p a r t i c l e   r a d i u s  f o r  s e v e r a l   w a v e l e n g t h s  (from R e f .  .7). 

n(x R = 6Rn(o) (X,) ( E  = o., 1, 2, . .. I 1 

where  the  parameters 6 are  unknowns of the  problem.  The  inverse 

problem  then  consists  in  determining  m  m  and a and B (or  the 

6 ' s )  froin the  measured  values of R at a  set  of  values of the 

independent  variable X . We  first  reformulate  the  inversion  prob- 

lem  as  a problem in  minimization  theory.  Denote  the  measured 

ratios by E fi uv{mr, mi; a,  B (or gR)) and  the  ratios  computed 

from Eqs. (28)  and (16c) by R E R (mrl m.; a l  B (or 6,)). Then, 

define  the  absolute  (or  relative)  deviations  D = R - R [ or 

(Rjn - R. ) /k .  1, n = 1, 2, . . . , N - 1, and  the  deviation  vector 
%I 
DT = (Djl,  D 

R 

r' i' 

R uv 

U 

uv  uv 1 - 
jn  jn  jn 

Jn  In 
j 2 '  

... D j N  - where  the  superscript T denotes 
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matrix  transposition.  In  these  definitions, j = 1, 2, ... N 
refers  to  the  fixed  wavelength A of  the  particular  set  of  ratios 

studied. 
V 

The  problem  is  to  minimize  the  objective  function: 

S. (m,, mi; a, B (or b R )  1 
3 

= D .  D T 
$3 Qj 

representing  the  sum  of  squares  of  deviations.  It  may  be  noted 

that  while  in  Eq. (29) we  use  the  Euclidean  norm,  any  other  norm 

could  be  considered.  One  could  also  define  the  objective  function 

by 

where W is  a  weighting  matrix  reflecting  the  degree  of  confidence 

in  the  individual  measurements,  their  spectral  resolution, 

accuracy,  etc.  It  may  be  noted  that  the  function S is  the  equa- 

tion  of  a  hypersurface  in  the  parameter  space  of  dimensions: 

% 

j 

m  m c1 and B or  m  mi, 6 , ,  6,, ... Equivalently,  then, 

the  inverse  problem  consists  in  finding  the  minimum  of  the  surface 

S This  minimum  is  located  by  the  author's  Minimization  Search 

Method (MSM) (Ref. 6 ) . 

r'  i'  r' 

j' 

Figure 9 provides  the  contour  curves  of  the  surface  S.(m m.) 
-J r' 1 

for x = 0.4pm and  size  distribution  parameters B = 9, 15  and  23. 

The  true  values  of  the  unknown  parameters  were  taken  to  be  mr = 1.44, 

m = 0.03 , a = 2 and = 15.  The  data ( "measurements")  were  gen- 

erated  in  the  computer  for  the  nine  wavelengths: X = 0.4, 0.45, 

0.49, 0.525,  0.575, 0.61, 0.-64,  0.67  and  0.7  pm.  The  figure  shows, 

irrespective  of  the  B-value,  that  the  unique  minimum  of  the  sur- 

face S is  always  located  at  mr = 1.44, mi = 0.03,  i.e.,  at  the  true 

value  of  the  complex  refractive  index.  This  result  is  not  sur- 

prising  in  light  of  our  earlier  remarks  in  connection  with Fig. 8. 

It  serves  to  demonstrate  that  the  extinction  ratios  are  insensitive 

to  the  size  distribution. As a  further  illustration  of  this 

j 

i 

U 
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F i g .  9 .  Contour curves of  the  surface S ( m r ,  m . )  for   s ize   dis tr ibut ion parameters B = 9 ,  15 and 
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23. Note t h a t  the minimum does not move a s  B increases  (from  Ref. 6 ) .  



insensitivity,  Table 3 is  provided.  This  table  shows  that  even 

for  highly  accurate  measurements  within  0.1%  accuracy,  the  insen- 

sitivity  to B ranges  from $ = 8 to f3 = 23 approximately.  Figure 9, 

together  with  Table 3 ,  demonstrate  conclusively  the  insensitivity 

of  spectral  extinction  ratios  within a narrow  wavelength  interval 

to  the  particle  size  distributuion.  They  are,  however,  extremely 

sensitive  to  the  refractive  index,  an  interesting  circumstance. 

An error  analysis of this  method  is  summarized  in  Table 4 for 

various  wavelength  sets  and  experimental  accuracies.  For  example, 

TABLE 3 

I l l u s t r a t i n g  the Insensi t iv i ty  o f  a Set 
o f  S p e c t r a l  Extinction R a t i o s  t o  the 

P a r t i c l e  S i z e  D i s t r i b u t i o n  
Parameter ( f r o m  R e f .  6') 

p\" I 0.45 

" 

0.49 0.525 0.575 0.61 0.64 0.67 

" ~~- 

"~ > .  . . . . .  
0.70 

. - 
................................................................................................................................ 
~ " ~ " ~ " ~ " ~ " ~ " ~ " ~ " ~ "  . .  

8  0.0264 0.0298 0.0445  0.0832  0.1264  0.1696 0.1908 0.1989 

9  0.0097 0.0110 i 0.0164 0.0306 I 0.0466 0.0625  0.0702  0.0735 

10 0.0035 0.0040 i 0.0060 0.0112 : 0.0171 0.0229  0.0257 0.0273 I 
........................ ................. ................. x 

I I  0.0013 0.0015 0.0022 0.0042 i 0.0062 0.0084 0.0089 0.0094 ? I  

.................. x- - x-   -x -   -x  . . . . . . . . .  ................................................................................. 

............................. ...... t , , __ ,   __ ,  .. , _ _ _  "x"x-  -x"&  -x"x- -x- -x  "x"x"x"x- +"X"X 

. . .  . . . . . . . . . . . . . . . . .  

...................................................... 
I2 0.0004 0.0006 0.0008 0.0015 0.0023 0.0030 0.0030 0.0038 , , t : x  

. I  

13 0.0001 0.0002 0.0002 
14 0.0000 

0.0006 
0.0001 0.000l 

0.0008 
0.0002 

0.0010 
0.0002 0.0003 

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 

0.0000 
I6 0.0001 

0.0000 

17 0.0002 0.0002 0.0004 0.0003 0.0004 0.0010 
0.0002 

0.0003 
0.0000 

18 0.0004 0.0007 0.0008 0.0009 0.0010 0.0010 0.0010 

19 0.0012 [ 0.0019 0.0023 0.0024  0.0025  0.0025 0.0030 0.0028 

20  0.0033  0.0052 j 0.0061 0.0067  0.0066 0.0066 0.0069 0.'0066 

0.00l0 0.0009 ? ' .: 1 
O.OOO! 0.0001 0.0001 0.0001 

: '* 
x 

4 .' I ............................................................................... 
I 1  

........................... , _ . _ _ " _ _ _ _ _ _  " " " " ................................................ . . . .  . . .  
21 0.0088  0.0141 : 0.0167 0.0182 0.01 77  0.0177 0.0188 0.01 79 I 

I .. .................... . _ " _  X 
22 0.0238 0.0384 0.0453 0.0493 0.0482 0.0478 0.0494 0.0490 

13 0.0645 0.1041 0. I229 0.1336 .0.1305 0.1304  0.1325  0.1320 

24 0.1742 0.2817 0.3325  0.3617  0.3588 0.3563 
25 0.4675 

0.3532 
0.7570 

0.3503 
0.8943 0.9733 0.9502 

26 3.1770  2.9293 
0.9432 0.9658 

1.8157 
0.9595 

0.3927 0.0210 0.7765 0.9262 0.6098 
21 1.7884 
28  3.3692 

0.0926 
1.5580 

0.8605 1.7033 0.1176 0.5073 2.7075 
4.3406 6.07 I3 

3.5535 

29 6.9419 
2.9787 4.6701 

5.2720 4.1998 
2.3339 2.4582 

30 16.3302 4.0105 
2.9636 5.7156 10.8785 10.9422 

11.6555 10.8407 
4.0361 

6.6112 7.8650 
31 16.7168 4.6318 11.0039 10.1242 5.8426  7.0861  2.2034 

1.3394 2.5600 
1.7098 

Error upper bpundr Out  digit  rounded off): 

~ " ~ " ~ " ~ " ~ " ~ " ~ " ~ " ~ ~  -x"x"x"x"x-  -x-  -x"x"x"x"x"x"x-  -x"x"x"x"x" 1 
............................................................................................................................................................................................................... 

. . . .  ~ ~ _ _ _ ~  

" -0.001%;""-=0.005%;--.".=0.01%;x"x"=0.05~ ... ......... =0.1% 

457 



TABLE 4 

Il lustrating  the  Sensit ivity of the  Inverse 
Solution for the Complex Refractive  Index 
and Size  Distribution Parameter to   the 
Number df Extinction  Ratios and Their 

Accuracy (from Ref. 6 )  

Wavelength 
ratios 

Number of 
significant 
figurcs 

3 
2 

~ 

true values 
guess 

MSM 
MSM 
MSM 
MSM 
MSM 

MSM 
MSM 
- . . ." 

I l l ,  

- 

1.44 
1.38 

1.43938 
1.4401 5 
1.43840 
1.44009 
1.43716 

1.44093 
1.44570 

0.03 
0.025 

0.001 
0.010 

0.02999 

0.111 
0.03007 
0.02776 

0.197 
0.006 

0.02686 
0.03009 

0.065 
0.396 

0.03009 
0.02656 

" . " - " -. . 

0.033 
0.233 
7.467 
0.285 
10.483 

0.303 
11.455 

" ~ ~~ 

P 

. .. 

15.0 
13.5 

13.1909 
13.1874 
13.3377 
13.2460 
13.3280 

using  only  three  channels a t  0.45 pm, 0.61 pm, and 0.67 pm, da ta  

with 0.1% accuracy  can  be  used t o  ob ta in   t he  real and  imaginary 

pa r t s   o f   t he   r e f r ac t ive   i ndex   t o   w i th in  0.07% and 0.3%, respec- 

t i ve ly .  

B. Reconstruction of the  Par t ic le   Size  Distr ibutuion:   Angular  
Forward Sca t t e r ing  Approach 

This  approach rests on  an ana ly t ica l   invers ion1  of 

Eq.(.24') us ing  the Bateman-Titchmarsh  formula. The r e s u l t  is 

'K. S. Shi f r in ,   Calcu la t ion   of  a c e r t a i n  class of d e f i n i t e  

in tegra ls   conta in ing   the  square of a f i r s t -o rde r  Bessel funct ion,  

T r u d y  Vsesoyuznogo Zaochnogo Lesotekhnicheskogo Ins t i tu ta ,  2 .  (1956).  

(Periodical  t i t l e  unof f i c i a l ly   t r ans l a t ed  as "Proc.  All-Union 

I n s t i t u t e  of Correspondence on Fores t ry  (or "Wood Technology") .> 
(Note: Copy of t h i s  ar t ic le  could  not  be  obtained  from  the  Librtiry 

of Congress ,   the   per iodical   could  not   be  ver i f ied  in  serial lists, 

or t h e   a r t i c l e   i n   a b s t r a c t -   j o u r n a l s . )  
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where y = xsin 0, and Y1 is  Bessel  function  of  the  second  kind 
and  order  unity:  This  result  is  extremely  interesting  for  it  shows 

that  n*(x)  can  be  obtained  from  the  data  by a simple  integration. 

And, if  the  refractive  index  is  known,  such  as  by  the  approach 

described  previously,  the  size  distribution  n(x)  can  also  be 

obtained.  In so doing,  no a p r i o r i  knowledge  of  the  size 

7 

\- 

PARTICLE SIZE, r,  pn; 

F i g .  10.  S a m p l e   r e c o n s t r u c t i o n s  o f  the p a r t i c l e   s i z e  distri- 

b u t i o n  w i t h  the a n g u l a r   f o r w a r d   s c a t t e r i n g  method ( f r o m  R e f .  3 ) .  

distribution,  or  its  analytical  model,  is  required.  Although  not 

critical,  the  knowledge  of  the  refractive  index  allows a more 

accurate  reconstruction  at  the  smaller  size  parameter  values.  The 

accuracy  obtained  is  estimated  to  be  better  than a few  percent. 
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The  present  method  of  determining  the  size  distribution 

appears  preferable  to  that  utilizing  spectral  extinction  data 

(Ref. 9.) in  that (i). it  does  not  need  an  extended  spectral  inter- 

val (0.35'pm - 2.27  pm)  over  which  the  aerosol  refractive  index 
must  be  assumed  known  and  constant,  (ii)  the  latter  assumption  is 

more  readily  met  in  the  nearrow  spectral  interval  used  in  our  ratio 

technique  for  retrieving  the  complex  refractive  index;  (iii)  it  is 

not  restricted  to  an  upper  size  limit  of 5 pm  with  systematic  over- 

estimations  at  larger  values. 

Figure 10 provides  some  sample  reconstructions  for  various 

angular  resolutions, A @ ,  in a forward  scattering  cone  of  half 
width, 0 = 450 min.  It  is  seen  that A 0  a 15 min.  provides 

indeed  excellent  reconstructions. 
max 

SYMBOLS 

B 

D 

I 

turbidity  factor 

Mie  coefficients 

kernel  function 

Fourier  transform  in E q .  (26b) 

weighting  factor  in E q .  (7) 

Planck's  function 

known  constant  in E q .  (18b). Also deviation  vector 

in E q s .  (29)  and (30) 

extinction  function  defined  in E q .  (16~) 

known  function  (measurements) 

auxiliary  functions  in Eqs. (20) and (21) 

scattering  diagram 

Fourier  transform  in E q .  (26b) 

gravitational  acceleration 

sought  function 

Fourier  transform  in Eq.  (26b) 

2pecific  intensity (I = incident  value) 
0 
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source  function 

Bessel  function 

wavenumber 

monochromatic  volume  (mass)  absorption  coefficient 

volume J (mass)  extinction  coefficient 

kernel  function  in Eq. (19) 

length  of  scattering  medium 

complex  refractive  index 

particle  size  distribution  [initial  guess  n(O) (X) 1 
Q:,~/ 4n (x) 
n(x)  or x%(,) in Eq. (19) 

pressure 

phase-matrix (P = phase-function).  Superscripts: 11 
I = isotropic, R = Rayleigh,  RC = Rayleigh-Cabannes, 

g = gases,  p = particulates 

Mie  efficiency  factor  for  extinction 

particle  radius 

radius  vector 

spectral  extinction  ratio 

objective  function 

Mie  complex  scattering  amplitude  in  forward 

direction 

transmission  function 

temperature 

mass  mixing  ratio  of  absorbing  gas 

weighting  function 

size  parameter 

single-valued  function  of  pressure 
value of  y  at  the  surface 

at  top of atmosphere  or  at  satellite  altitude. 

x sin0 in Eq. (31) 

Bessel  function 
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altitude (zl = value  of z at lower  boundary; z2 - - - 
at upper  boundary; z = at  top  of  atmosphere or  at 

satellite  altitude) 

expression  in  moments  of  size  distribugion  in Eq. (28) 

direction  cosines 

gaseous  depolarization  factor 

displacement  constants 

zenith  angle ( 0  = cos p).Subscript  zero  for -1 

incidence. 

scattering  angle ( A 0  = angular  resolution) 

wavelength 

frequency (v = f  in  continuum, v = R in  spectral 

line) 

absorbing  gas  density,  also p = 2x1111 - 11 in Eq. 
(18a) 

volume  (mass)  scattering  coefficient 

optical  depth ( T ~  = optical  thickness) 

scattering  optical.thickness 

azimuth  angle 

solid  angle 

single  scattering  albedo  (in  Table 2) 

direction  vector.  Superscript  plus  (minus)  for 

upward  (downward) 
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DISCUSSIONS 

Green: D i d  I understand  your  curves were going t o  negative numbers 
of particles below three  microns? 

Fymat: In some o f   t hese   r e t r i eva l s ,  when t h e   s i z e   d i s t r i b u t i o n  
is  zero a t  t he   o r ig in ,  w e  have  such  negative ta i ls .  We have numer- 
i c a l   d i f f i c u l t i e s   i n   r e t r i e v i n g   t h e s e   n u l l   v a l u e s .  The d i f f i c u l t i e s  
disappear,  however, when the d i s t r ibu t ion   has  a f i n i t e   v a l u e  a t  t h e  
o r ig in  or were we to  vary  the  half-width  of  the  forward  scattering 
cone  according  to   the  par t icular   radius   for   which w e  w i s h  t o  recon- 
s t r u c t   t h e   d i s t r i b u t i o n .  The r e s u l t  d i sp layed   in   F igure   10  of my 
paper  included  neither of these  two f ea tu res ,  and w a s  aimed a t  
i l l u s t r a t i n g   r e s u l t s  when both t h e   d i s t r i b u t i o n  starts from zero 
and the   sca t te r ing   cone   a re f ixed   for  a l l  r ad ius   va lues .   In   t h i s  
context,   providing w e  remain  within  the domain  of a p p l i c a b i l i t y  of 
the   theory ,   the   par t icu lar   rad ius   va lue  a t  t h e   o r i g i n  i s  i r r e l evan t .  
It  has   rea l ly   no th ing   to  do with  exact ly  three microns. I t  i s  j u s t  
t h a t  w e  are using  the  wavelength  of  one  micron  and  the  particular 
d i s t r i b u t i o n  w e  are employing for do ing   t hese   r e t r i eva l s  started a t  
three microns. 1 micron = 1 micrometer. 

Reagan: I have t w o  ques t ions   o r  comments. One on   the   s ize   d i s -  
t r i b u t i o n  limit. We have  talked  about  this  before.  It appears 
that   the  combination  of  the  kernel and t h e   s p e c i f i c  shape of t he  
d i s t r i b u t i o n ,   p a r t i c u l a r l y  when you get i n t o  some of  the  bimodal 
types,  indeed  does  extend the range  over  which you may hope t o  
i n v e r t  the s i z e   f o r   u s .  So w e  deal   wi th,  for  example, 0.4 t o  1.0 
micron  wavelength  range  of  measurements  for  radiometer _work.  And 
in   t he   i nve r s ions ,   i ndeed ,   fo r   ce r t a in  types o f   s i z e   d i s t r i b u t i o n s  
w e  seem t o  have some success   ge t t ing   ou t   to  three t o   f i v e  microns. 
The second  thing i s  w i t h  r ega rd - to   r e f r ac t ive   i ndexes  you were 
showing there. I w a s  cur ious what the  size  range  assumption  might 
have  been  on the  Junge  calculations.   For what I gave earlier i n  
the  conference1  for  our  radiometer work, deal ing  again from say 0.4 
t o  1 . 0  micron,  the  refractive  index seemed t o  be   qu i t e   i n sens i t i ve  
in   e f fec t ing   the   shape   of   the   s ize   d i s t r ibu t ion  for  values  running 
from about 1.33 up bo about  1.55. Those ca l cu la t ions  were based . 

on  Junge i n t e g r a l s  from  about 0.02 t o  10  microns,   again  for t h a t  
0.4 t o  1.0  micron  range.  Perhaps it w a s  the wavelength  range  that 
w a s  g iving the va r i a t ion   i n   i ndex  that you were showing there., 

Fymat: Indeed, w e  have d i scussed   t h i s  problem  several times. I f  
I go  back on ly   t o   t he   ex t inc t ion   e f f i c i ency   f ac to r ,  I have g r e a t  
d i f f i c u l t y   i n   t r y i n g   t o   u n d e r s t a n d  how. you could  retr ' ieve  size 

'Topical Meeting  on  "Atmospheric Aerosols, Their Optical 
Properties  and  Effects,"  sponsored'by  the Optical Society  of America 
and t h e  NASA-Langley Research  Center. 
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d i s t r i b u t i o n  up to   f i ve   mic rons  or more with the wavelengths you 
use. The  work of Yamamato-Tanaka  showed t h a t  you have  'to  go t o  
larger wavelengths to  be ab le  to  sound the  larger particle r a d i i .  
Now, i f  you combined the   ex t inc t ion   wi th   o ther   t echniques  t o  com- 
pensate i n  a sense  for  the  other  wavelengths  you-:are  not  using, 
maybe! But ,   again,   looking  s t r ic t ly  a t  the   ex t inc t ion ,  I have 
difficulty  understanding  on  the  basis  of  the  physics  of  the  problem 
how you can go t o   f i v e  micron particles, approximately, by restric- 
ting  yourself   to  this  very  narrow  wavelength  range. 

Reagan: Well, as I w a s  say ing ,   perhaps   cer ta in   s ize   d i s t r ibu t ions  
with  peak  par t ic le   concentrat ions  near  5.0 microns may ex tend ' tha t  
s l i g h t l y .  

Fymat: Slight ly   perhaps up t o  one t o  t w o  microns ,   bu t   no t   to   f ive  
microns. 

Twomey: I think I am a l i t t l e  uncomfortable when I hear  phrases 
l ike  "s ize   dis t r ibut ion"  and  "refract ive  index."  I think  people 
should  think a l i t t l e  more of  perhaps  changing  the  wording a little 
b i t  and  saying  "size  and  refractive  index  distribution."  Because,  
I th ink  w e  have no guarantee  whatever  that  the  composition  remains 
constant  and so I'll say  over a decade   in   s ize   d i s t r ibu t ion .   In  
fact ,  when I g e t  down towards 0.1 on the  micron, w e  a r e   i n  a very 
dangerous  region  where  there  are  really no good sources   of   par t ic les  
i n   t h e  atmosphere. We are a t  the  lower t a i l  of  effectiveness  of 
processes which  produce  particles  from'the  bulk,  and we are a t  a 
r a the r   l a rge   s i ze  when w e  a r e  a t  the  upper t a i l  of  the  processes 
which produce  par t ic les  from the  vapor.  So w e  must  expect, I 
th ink ,   espec ia l ly   a round  tha t   s ize   reg ion ,  mixed composition  and, 
furthermore, a mixed composition  which i s  size  dependent. 

Fymat: I fully  agree  with  your  statement.  

Herman: I think you  made a statement  during  your  talk  which 1 am 
not   sure  you meant t o  say,   but  you sa id   t he re  is  no s i z e   i n f o m a t i o n  
in   the   range  of 0.4 t o  1.0 micron. 

F y m t :  N o ,  t h a t  w a s  not  the  statement.  

Herman: I thought   that  was what you said.  

Fymat: What I sa id  w a s  t h a t ,   i f  you look  into  narrow  wavelength 
intervals ,   the   corresponding spectral ra t io  measurements are a l i t t l e  
sens i t i ve  t o  the   s i ze   so lu t ion .  I am not   saying  there  is no infor-  
mation. As you b roaden   t he   i n t e rva l ,   t he   s i ze   s ens i t i v i ty   i nc reases ,  

Herman: I would agree  with you t h a t   t h e r e  is  no information  out 
beyond one or two microns on t h e   s i z e   d i s t r i b u t i o n ,   b u t   t h e r e  i s  
in fomat ion  from a few tenths   of  a micron  out t o  one or t w o  microns. 
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And I t h i n k   t h e o r e t i c a l l y  it is easy t o  show t h i s .  The f a c t   t h a t  
t he   ke rne l s  do not peak a t  those  points   does not m e a n  t h a t   t h e r e  
is  no information. 

F y m a t : .  No, 1 , n e v e r   s a i d   t h a t   t h e r e  is no information.  Also,  keep 
i n  mind. t h a t  I am working  with  extinction ratios and not   the   ind i -  
v idua l   ex t inc t ions .  

K u r i y a n :  In   our  1974 paper, we have shown t h a t   i f  a Deirmendjian 
haze H-type d i s t r ibu t ion ,   w i th  a va r i ab le  parameter b, w a s  assumed., 
then precise multispectral   extinction  measurements  can be used t o  
i n f e r   t h e   s i z e   d i s t r i b u t i o n  parameter b a s  w e l l  a s  t h e  complex index 
of r e f r ac t ion .  The errors i n   t h e  measurement introduce  corresponding 
errors i n   t h e   i n f e r r e d  parameters. I f  a Junge  dis t r ibut ion is  used, 
then  the  problems  associated  with  the limits of   integrat ion  prevent  
the   de te rmina t ion   of   the   index   of   re f rac t ion   in  some cases. It  seems 
a s . i f ,  and  no attempt t o  prove  this   s ta tement   has   been made, the  
log-norma1,distribution  can also be  used t o  i n f e r   t h e   s i z e   d i s t r i -  
bution parameter and the  index  of   refract ion.  Thus, ex t inc t ion  
measurements in   the  vis ible   range  cannot   be  used t o  arrive a t  a 
unique r e su l t  bu t   can   y ie ld ,   i f   the   haze  H type   o f   s ize   d i s t r ibu t ion  
is assumed,  both  the modal r ad ius  and the . index   of   re f rac t ion .  It 
must  be  emphasized t h a t   b o t h   t h e  log-normal  and the  haze H - t y p e  
d i s t r i b u t i o n s  are w e l l  behaved a t  small and large  values   of   the  
rad ius   and ,   thus ,   the   in tegra ls   can   be  computed f o r   t h e   . i n f i n i t e  
range. It Seems reasonable   to   conc lude   tha t   the   o r ig in  of the  
nonuniqueness i s  the  incomplete  information  that  is  ava i lab le  when 
w e  r e s t r i c t   t h e  measurements t o   t h e   v i s i b l e   r a n g e .  It is ,  of 
course,   impractical  t o  extend  measurements t o  the  ent i re   spectrum 
since  absorption  due  to  nonaerosol matter w i l l  i n t e r f e re   w i th   t he  
measurements. 

F y m a t :  I have  a lso employed the 'Deirmendjian  dis t r ibut ion.  What 
I have shown 'is t h a t ,  €or such a d i s t r ibu t ion ,   t he   ex t inc t ion  
ratios taken  over a narrow  wavelength  interval,   say  0.45  to 0.70 
microns,   cannot   be  used  to   s imultaneously  reconstruct ' the   par t ic le  
s i ze   d i s t r ibu t ion   ou t   t o   s eve ra l   mic rons  and r e t r i e v e   t h e  complex 
re f rac t ive   index .  3 Nevertheless, what is  i n t e r e s t i n g  is  t h a t   t h e s e  
e x t i n c t i o n   r a t i o s   e n a b l e   u s   t o   r e t r i e v e   t h e  complex re f rac t ive   index  
essent ia l ly   independent ly  of t h e   s i z e   d i s t r i b u t i o n ,  a t  least  when 
a gamma d i s t r i b u t i o n  i s  assumed. 

L 

2Kuriyan,  Chahine  and  Phillips, J. A t m o s .  Sci. 31,  2233-2236 
(1974). 

A. Fymat, Inverse  a tmospheric   radiat ive  t ransfer   problems : 
A non-linear  minimization  search method of   solut ion,  P h y s .   E a r t h  
P l a n e t .  Inter. 1 2 ,  273-282 (1976). 
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" 

van de H u l s t :  In  one of your  earlier  slides,  you  had a number  of 
linear  combinations,  and  one  of  the  linear  combinations  was  between 
the  situation  of  cloud  cover  and  without  cloud  cover, I remember. 

Fymat: Yes. 

van d e   H u l s t :  Have  you  looked  at  all  into  the  validity of such a 
.linear  combination,  because  it  is a very  general  question. If you 
have a sky  partly  covered  by  clouds, of course,  the  interplay of 
the  light  is  completely  different  from  what  you  would  have  in a 
s t r a t i f i e d  layer. 

Fymat: What I had  in  mind  in  putting  that  linear  combination  was 
really a masking  effect  of  the  clouds  in  the  same  way  as  we  heard 
earlier  for  the  temperature  sounding  problem,  and  not so much  in 
the  interaction  which  takes  place  between  the  clouds  and  the 
radiation  field.  But I will  have  to  look  more  carefully  into  this 
latter  aspect.  The  other  thing I would  like  to  point out is  in a 
different  subject. I think  that  this  kind  of  extinction  experiment 
can  extremely  easily  be  accommodated by a SAGE-type  experiment. 
It  is  really a matter  of  choice  of  wavelengths. 
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APPLICATION OF MODIFIED TWOMEY TECHNIQUES TO 

INVERT  LIDAR  ANGULAR  SCATTER  AND  SOLAR 

EXTINCTION  DATA FOR DETERMINING 

AEROSOL SIZE DISTRIBUTIONS 

B. M. Herman 
Universi t y o f  A r i  zona 

I t  h a s  been shown t h e o r e t i c a l l y  ( R e f .  1 )  t h a t  the 
p o l a r i z a t i o n   p r o p e r t i e s  o f  the a n g u l a r l y   s c a t t e r e d   l a s e r  
l i g h t   f r o m  a volume of a i r  may be used  to  d e t e r m i n e  the 
s i z e   d i s t r i b u t i o n  o f  the a e r o s o l   p a r t i c l e s  within the volume 
b y  the u s e  o f  a p p r o p r i a t e  inversion ' t e c h n i q u e s .   S i m i l a r  
t e c h n i q u e s  may be employed t o  determine a "mean" size d i s -  
t r i b u t i o n  o f  the p a r t i c u l a t e s  within a v e r t i c a l   c o l u m n  
t h r o u g h  the a tmosphere  f r o m  d e t e r m i n a t i o n s  o f  the a e r o s o l  
o p t i c a l   d e p t h   a s  a f u n c t i o n  of wave leng th .  In both of the 
e x a m p l e s ,   p r i m a r i l y   b e c a u s e  o f  the n a t u r e  o f  the kernel f u n c -  
tions i n v o l v e d ,  a m o d i f i c a t i o n  o f  a n  inversion t e c h n i q u e  
o r i g i n a l l y   d e s c r i b e d  b y  Twomey (Refs.  2 and 3) h a s  been 
e m p l o y e d .   D e t a i l s  o f  this method w i l l  be p r e s e n t e d   a s  
w e l l  a s   r e s u l t s  from a c t u a l .   m e a s u r e m e n t s   e m p l o y i n g  the 
U n i v e r s i t y  o f  A r i z o n a   b i s t a t i c   l i d a r  and s o l a r   r a d i o m e t e r .  

I. INTRODUCTION 

With  the  development  in  recent  years  of  high-powered,  pulsed 

laser-radar  (lidar)  systems,  considerable  effort  has  been  directed 

toward  the  problem  of  utilizing  these  systems  to  infer  the  vertical 

structure  of  the  atmosphere  (e.g., R e f s .  4 ,  5, and 6). These 

studies  were  based  upon  an  analysis  of  the  backscattered  signals 

only  and,  as  such,  were  quite  limited  in  information  content. As 

a result,  little  progress has been  made  from  such  studies  toward 
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inferring  aerosol  size  distributions  (Ref. 7). However,  as  has 

been  pointed  out  by  Reagan  and  others  (Refs. 8 and 91, considerable 

additional  information  may  be  obtained  from  the  angular  scattering 

properties  of  the  atmosphere  by  the  use  of  bistatic  lidar. 

Accordingly,  such a system has  been  constructed  at  the  University 

of  Arizona  for  the  purpose  of  studying  the  size  as  well as the 

height  distribution  of  atmospheric  aerosols.  The  essential  features 

of  this  system  have  been  described  elsewhere  (Refs. 8 and 9). 

In  another  parallel  line  of  research, a series  of  solar 

radiometers  have  been  designed  and  constructed  to  measure  atmo- 

spheric  turbidity  at a series  of  wavelengths  throughout  the  visible 

and  near  Infrared  (IR)  portions  of  the  spectrum.  These  instruments 

have  been  described  by  Shaw  and  others  (Refs. 10 and 11). The  pur- 

poses  of  the  solar  radiometry  have  been  many.  They  provide a con- 

tinuous  monitoring  of  atmospheric  aerosol  optical  depths  through- 

out  the  wavelength  range  covered  by  the  filters.  Secondly,  since 

one  of  the  filters  is  at  the  laser  ,(ruby)  wavelength  of 6943 nm, 
the  optical  depth  of  the  aerosols  at  this  wavelength  provides a 

means  to  normalize  the  laser  back-scatter  signal,  thereby  pro- 

viding a bettek  means  to  interpret  the  back-scatter.returns  in 

terms  of  the  volume back-scatter.coe€€icient. This  procedure  has 

been  described  by  Fernald  and  others  (Ref.  12) . An additional 

bonus  of  solar  radiometry  is  that,  by a proper  choice  of  filters, 

it  may  be  used  to  infer  vertical  loadings  of  absorbing  gases,  such 

as  ozone  and H 0. Finally,  by  virtue  of  the  variation  of  aerosol 

turbidity,  or  optical  depth  with  wavelength, a second,  completely 

independent  method  of  determining  the  aerosol  size  distribution  is 

provided.  The  distribution  thus  obtained  is  some  type  of  average 

through  the  entire  vertical  column  of  the  atmosphere  but  is, 

nevertheless,  quite  useful.  In  the  foilowing  section,  the  inversion 

methods  used  will  be  outlined,  and  finally,  results  from  actual 

data  will  be  presented. 

2 
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11. THEORETICAL  DEVELOPMENT 

A. Bistatic  Lidar 

Figure 1 shows a schematic  diagram  of  the  bistatic  system. 

In  this  diagram,  the  transmitter  sends  out a pulse  at  an  angle 

. y1 to  the  local  normal,  while  the  receiver  views  at  an  angle y to 

the  local  normal.  The  shaded  area  at a height z above  the  ground 

represents  the  instantaneous  scattering  volume, V, which  is  that 

volume  from  which  scattered  light,  scattered  through  the  angle 8, 

reaches  the  receiver  at a given  instant  of  time.  For  the  case  in 

which  the  transmitted  pulse  is  essentially  all  within  the  receiver 

field  of  view,  the  lidar.  equation  for  the  nth  Stokes  parameter  of 

the  scattered  flux  received  by  the  receiver Fn (e, R is 

2 

2 

INSTANTANEOUS 
SCATTERING 
VOLUME 

"- 

TRANSMITTER  R EC 

F i g .  1. Schemat ic   d iagram of b i s t a t i c   s y s t e m .  
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m, n = 1, 2, 3 ,  4 (1) 

where ~ ( z )  is  the  optical  depth  from  the  ground  to  height z, R is 

the  pulse  length,  A  is  the  effective  receiver  aperture,  and  F 

is  the  mth  Stokes  parameter  of  the  transmitted  flux.  The  term 

P (0) is  the  nmth  element  of  the  scattering  matrix  for  scattering 

through  the  angle 8, with  dimensions of cross  section  per  unit 

volume  per  steradian.  For  a  more  complete  discussion  of  the  lidar 

equation,  see  Regan  and  Herman  (Ref. 8). Since  R = z/cos y2,. 

Eq. (1) may  be  written  as 

(t) 
R m 

nm 

2 

(m, n = 1, 2; 3 ,  4) (2) 

ARE where K = - , a  constant  for-observations  made  at  a  constant 
height, z. 

222 

Let US now  consider  the  scattering  matrix  element, pnm(e). 

As  defined,  this  term  has  the  dimensions  of  scattering  cross- 

section  per  unit  volume  per  steradian  and  is  given  by 

where  P ( 0 ,  r)  is  the  nmth  element of the  scattering  matrix  for 

a particle  of  radius r, and  n(r)  is  the particle-size distribution 
nm 

function.  The  term  P ( 0 )  is  the  nmth.  element  of  the  normalized 

scattering  matrix  for  Rayleigh  scattering, is  the  Rayleigh  inass 

attenuation  coefficient  at  some  standard  level  for  the  wavelength 

x, while po and p ( z )  are  the  air  densities  at  the  standard  level 

nm BY. 
kX.O 
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and  at  the  height z ,  

side  can  be  replaced 

P (0)  = ~ ~ ( 0 ,  nm 

respectively.  The  integral on.the right-hand 

with a sum, such  that  Eq. ( 3 )  becomes 

Fl)f(rl) + P,,(o, F 2 ) f ( r 2 )  + ... 

r, + Arj 
f(r.1 = 1 n(r)dr (j = 1, 2, .. . q) 

r 3 
j 

Substituting  Eq. (4 )  into  Eq. ( 2 ) ,  the  lidar  equation  for  the  nth 

Stokes  parameter  at a scattering  angle, Bit becomes 

There  will,  thus,  be  four  equations of the  form  of  Eq. (61, one  for 

each  of  the  four  Stokes  parameters  (i-e.,  for  each  value  of 

n = 1, 2, 3 ,  4),  for a given  angle, Oi. Thus,  the  total  number  of 

such  equations  will  be 4 x number  of  scattering  angles  at  which 

observations  are  made.  In  general,  we  may  write 

Af = 9 (7) 

where g is a vector  of  the  observations,  with  components  given  by - 
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and  of  dimensions 4 X k ,  where k is  the  number  of  scattering  angles, 

€Ii, at  which  observations  are  made.  We  have  here  assumed  that  the 

optical  depth, T ( z ) ,  is known so that  the  Rayleigh  contribution 

term  may  be  computed  and  subtracted  from  the  observations.  The 

value  of ~ ( z )  may,  in  fact,  be  determined  to  within ? 1% accuracy 

from  other  measurements,  the  technique  for  which  will  be  described 

in a later  paper.  The  vector f is  the  vector  of  the  unknowns  to 

be  solved  for,  with  components f ( ~ ~ 1  , f (r2,) , . . . 
each  component  gives  the  number  of  particles  within  the  particular 

increment  of  radius,  as  given  by  Eq. (5). The  coefficient  matrix, 

A, is  conposed  of  known  quantities,  the  elements of which  are 

given  as 

(‘q) where 

QJ 

A l l  = b l l ( e l ,  G1)F1  (t) + P12(f3,, r1)F2 +.P13(81,  rl)F3 
- (t) - (t) +I 

l +  1 cos2 y, -? ( z )  (cos y1 cos y 1 
P14(e1’ ;l)F4(t)] X K e 

2 
2 8 1  sin - 

2 

Equation  continued on next  page 
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Thus,  the  A  matrix  will  have  dimensions 4R x q, where 4R is  the 

total  number  of  observations,  and q is  the  number  of  unknowns, 

the  f(r.1.  The  individual  elements  of  the P scattering  matrix 

for  q  given  value  of 0 and r, Pm(Bi, F . ) ,  are  determined  from  Mie 
theory,  while  the  Stokes  parameters of the  transmitted  light,  the 

Fn(t) , are  assumed  to  be [ 1/2, 1/2, 1, 01 in  order  that  the  trans- 

mitted  light  be  linearly  polarized  at 45 to  the  scattering  plane. 

% 

7 

3 

0 

In  reality,  since  measurement  errors  are  always  present,  as 

are  quadrature  and  roundoff  errors  in  the  numerical  evaluation of 

Eq. ( 3 )  (i-e., Eq. (4)), Eq. ( 7 )  should  be  written  as 

A f = g + E  (9) 

where  the  components  of E are  the  errors  in  each  equation.  Because 

of  the  presence  of  errors,  Eq. (9) no  longer  possesses a unique 

solution,  and  attempts  at  a  direct  solution  with E set  equal  to 

zero  almost  always  result  in  poor,  highly  oscillatory  solutions, 

as shown  by  Phillips  (Ref. 13) . Twomey  (Refs. 1 -and 3) -demonstrated 
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possible  constraints  which  are  applicable  to  problems  of  this  sort. 

One  of  these  constraints  is  in  the form of a smoothing  constraint 

in  which  the  second  derivative  of  the  solution  points 

a2f ( rj) / a r  is minbized. This  constraint  leads  to  the  solution 

in  which  AT  is  the  transpose  of  the A matrix, H is a smoothing 

matrix,  and y is a Lagrangian  multiplier.  The  value  of y deter- 

mines  the  amount  of  smoothing,  and  is so chosen,  by  experimenta- 

tion,  to  give  reasonable  solutions.  The  value of y is  not  overly 

critical,  in  the  sense  that  varying  it  from  the  chosen  value  over 

a range  of  an  order  of  magnitude  does  not  seriously  affect  the 

solution. 

'L  'L  'L 

Another  possible  constraint  proposed  by  Twomey  for  those  cases 

in  which a reasonable  estimate  of  the  solution  is  known  consists 

of  minimizing,  in a least  squares  sense,  the  differences  between 

the  actual  solution  and  the  initial  estimate, or trial  solution. 

This  leads  to  the  solution 

where I is  the  identity  matrix  and P is  the  vector  of  the  estimated 

solution  points. 
% I 

In  the  present  study  utilizing  angular  scattering  data,  the 

elements  of  the A matrix  given  by Eq. (8) are  composed  of  elements 

of  the  scattering  matrix, P ( e ,  r). For  values  of r < X,  where 

A is  the  wavelength  of  the  incident  light  (in  this  case,  X=O.6943  vm, 
representative of a ruby laser), ( 8  , r)  is,  indeed, a smooth 
function  of  r.  This  is  demonstrated  in  Fig. 2, which  shows Pll 

for 8 = 130°,  for  radii  between  0.01um  and-0.190 urn.< However,  as 

r increases,  the  matrix  elements  become an increasingly  erratic 
function  of r, as  demonstrated  in  Fig. 3 ,  which  shows  the  same 

element  for  radii  between  1.20pm  and 1.50.w.. 'Ilherefore; in order 

to  get  an  accur&te  numerical  representation of Eq. (3 )  , it  is 

nm 

prim 
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F i g .  2 .  M a t r i x  element Pll for e = 130 a s  a f u n c t i o n  of 
0 

p a r t i c l e   r a d i u s  for r a d i i  between 0.01 pm and 0.190 pm. 

I I 

50  

RADIUS, pm 

F i g .  3 .  M a t r i x   e l e m e n t  P for 8 = 130 as a f u n c t i o n  o f  0 
1 1  

p a r t i c l e   r a d i u s  for  r a d i i  between 1.20 pm and 1.50 pm. 
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necessary  to  break  the  integral  up  into a large  number of very 

small:  intervals  (Ref. 14). For  the  range  of  sizes  considered 

in  this  work,  approximately .lo00 ,intervals in r were  considered 
necessary  in  order  to  assure a reasonably  accurate  representation 

of  the , integral  in Eq. ( 3 )  . This,  then,  would  require  1,000  values 

of  the  unknown f (r .) , as  can  be  seen  from  Eqs. (4) and (5) , which, 
in  turn,  would  require  the  inverse  of a matrix, A A ,  as in  Eqs. 

(10) and (11) of  dimensions 1000 x 1000. In  order  to  simplify 

this  process,  the  following  technique  was  employed.  Each  of  the 

relatively  large  intervals  in  Eq. (4) was  broken  down  into a series 

of  smaller  sub-intervals  such  that  Eq.  (41,  less  the  Rayleigh  term, 

becomes 

J 

7 T 

- 
Pnm(ei)aer 4 f(rl) k 1 pm(ei,  rk 1 1 1  )wk (rk 1 + 

where  the W.(r,) are  weighting  functions  to  be  described  below, 

and  the  subscript  aer  ’indicates  that  part  of  the  scattering  matrix 
3 7’ 

element  due  ta  aerosols  only.  The  coefficients of the  unknown 

f(F.)  in  Eq. (12) will  then  appear  in  the  expression  for  the  coef- 

ficient  matrix,  Eq. (81, in  place  of  the P (ei, r.1. Thus,  for 
3 

nm 3 
example,  the  expression  for A becomes 

11 

. +  
1 

cos2 Y 2  (cos y ’ cos y 1 
X K  

1 e 1 

2 -  01 sin 2 



In i t ia l ly ,   the   weight ing   func t ions  are unknown, as knowing 

them would be   equiva len t   to  knowing t h e   s o u g h t   a f t e r   s i z e   d i s t r i -  

bution  function. Thus ,   an   " in te l l igent"   f i r s t   guess  is made,  and. 

t h e  problem  reduces t o  one of f ind ing   t he  unknown f ( r . 1  which, 

when mult ipl ied by t h e  assumed weighting  functions,   gives  the 

s o u g h t   a f t e r   s i z e   d i s t r i b u t i o n   f u n c t i o n .   I f   t h e   i n i t i a l l y  assumed 

weighting  functions  are  exact,   the  solution  vector f w i l l  be a 

un i t   vec to r  (i.e. , f (r . ) = 1, j = 1 , 2, . . . q) . Any e r r o r s   i n   t h e  

i n i t i a l  guess of  the  weighting  function w i l l  be  mathematically 

ind is t inguishable  from  measurement e r rors   and ,   therefore ,   the  

worse t h e   i n i t i a l   e s t i m a t e ,   t h e  worse w i l l  be the   r e su l t i ng   so lu -  

t i o n .  However, t h i s   f i r s t   s o l u t i o n  w i l l  still be a bet ter   approxi-  

mat ion   than   the   f i r s t  guess, and so the  process i s  repeated.  For 

the  second  i texation, however, t h e   f i r s t   s o l u t i o n  is used a s   t h e  

weighting  function, and  a new f l ( r . )  is obtained. For t h e  second 

i t e r a t i o n ,   t h e   f i r s t   s o l u t i o n   v e c t o r  components a r e  assumed t o  be 

v a l i d   a t   t h e  mid-point  of  each  of  the  large  intervals  in r ,  and 

are connected by s t r a i g h t   l i n e s .  Thus, Tor the  second i t e r a t i o n ,  

Eq. (12) becomes 

3 

3 

3 

where A r ,  . . . A r  are the  increments of A r  f o r   t h e   l a r g e   i n t e r '  

vals ,   whi le   the A r k  a r e   t h e   i n t e r v a l s  of A r  i n   t he   sub in te rva l s ,  

and t h e   f l ( r . )  are t h e  components  of t he  new so lu t ion   vec tor .  I n  

pr inc ip le ,   one   could   cont inue   the   i t e ra t ive   p rocess   un t i l  two 

q - 1  

j 
3 
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successive  solut ion  vectors   agreed  to   within  any  pre-specif ied 

amount. I n   p r a c t i c e ,  it was found t h a t  two such   i t e r a t ions  were 

adequate. 

Sinc'e  most  measurements  of t h e   s i z e   d i s t r i b u t i o n  of cont inental  

aerosols  seem t o   i n d i c a t e   t h a t   t h e s e   f u n c t i o n s   f o l l o w   t y p i c a l l y  

what i s  known as a Junge  dis t r ibut ion ( R e f s .  15  an&  16) , given by 

dn - ( V *  + 1) 
d r  
" - cr  

a reasonable first guess   for   the  weight ing  funct ions would be t o  

assume tha t   t he   d i s t r ibu t ion   func t ion  is of t h e  form  given by 

Eq. (15). Thus, Wk i s  given by 
j 

- 
"7  

C I 1  1 
" 

V*  r (rk + A r  Iv* 1 
k 
j j j 

. k  

where c i s  a normalizing  constant   determined  such  that   the   total  

i n t e g r a l  of Eq. (15)  over a l l  s i zes   y i e lds   t he   p rope r  number den- 

s i t y   p e r   u n i t  volume,  while v is a shaping  constant.   Typical 

values  of v* l i e  in   t he   r ange  of 2 .0  t o  4.0. 

* 

I n   t h e   t h e o r e t i c a l  work to  follow,  "measurements"  of  the  four 

Stokes  parameters a t   f i v e   s c a t t e r i n g   a n g l e s ,  0 ,  a t   f i x e d   h e i g h t  z ,  

and fo r   va r ious  assumed . s i z e   d i s t r i b u t i o n s ,  were computed  from 

Eq. ( 2 ) .  These  twenty  "observations" were then  used per se, and 

with  introduced random er-rors  of 1% and 2%, i n   o r d e r   t o  compute 

20 invers ion   so lu t ion   po in ts ,   the  f (r . )  , by the  teckpique  des- 

cr ibed above.  These so lu t ion   po in ts  were taken 'to apply  over  each 

of 20 l a r g e   i n t e r v a l s   i n  A r ,  taken  such  that   log A r  = Constant   for  

a l l   i n t e r v a l s .  The volume s c a t t e r i n g  matrix elements  due t o  

ae ro   so l s  , P 

3 

m (') aer 1 
were computed  from Mie theory  with a numerical 
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approximation  to Eq. (3), while  the  Rayleigh  component  was  com- 

puted  assuming a standard  atmospheric  density  distr2bution. 

Figure 4 shows  an  inversion  solution  for a true  distribution 

which  is a straight  Junge-type  with V *  = 2.5. The  initial  weighting 

functions  were  computed  from Eq. (16)  assuming v* = 3.5 (long 

dashes).  The  initial  smoothing  solution, Eq. (lo),  is  shown  as 

short  and  long  dashes,  while  the  final  solution, Eq. (ll), is 

shown  as  short  dashes.  For  the  sake  of  clarity,  the  second 

iteration  using  the  smoothing  constraint  has  been  omitted  from 

this  figure  and  from  Fig. 5, but  in  both  cases  lies  roughly  inter- 

mediate  between  the  first  and  final  solutions.  In  this  case, a 

nearly  perfect  inversion  is  obtained  for  radii  greater  than  about 

0.2 . It  is  important  to  note  here  that  "exact  observations"  were 
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\ \,\ TRUE DISTRIBUTION,  JUNGE, Y ~ 2 . 5  "_ INITIAL GUESS,  JUNGE, Y = 3.5 

""_ FINAL SOLUTION 
1st SOLUTION 
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\ 
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.0457 .0832 .I51  .275 . 5 0 1  .912 1.66 3.02  5.50 

RADIUS, pill 

F i g .  4 .  Inversion  results for zero  error i n  observations for 

Junge-type distribution. 
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used i n   t h i s  case; t h a t  i s ,  observa t ions   p rec ise ly  as computed 

were used .   In   the  smaller range   of   s izes ,   resu l t s ,   whi le  satis- 

fac tory ,  are no t   qu i t e  as good. This i s  undoubtedly  due t o  t h e  

fact t h a t   t h e  smaller s i z e s  are in  the  Rayleigh  region  for   the  ruby 

wavelength,  which r e s u l t s   i n  a l l  such particles having  the same 

v a r i a t i o n  of the   sca t te r ing   mat r ix   e lements   wi th   sca t te r ing   angle ,  

9. Thus, the  only  information  content  in  the  measurements  for 

these  small p a r t i c l e s ,   i f   t h e y  were precisely  Rayleigh scatterers, 

i s  the   t o t a l   s ca t t e r ing   c ros s   . s ec t ion ,  and t h i s   c a n  be made up of 

l a r g e  numbers of   the  smallest par t ic les ,   o r   fewer  numbers of  the 

l a r g e r   p a r t i c l e s  of the  Rayleigh  region,  or  any  intermediate  dis- 

t r i b u t i o n .   S i n c e   t h e   s c a t t e r i n g   d i f f e r s   s l i g h t l y  from  pure 

Rayleigh,  there is ,  i n  fact, a s l i g h t  amount of  information con- 

t e n t   i n   t h e  measurements, as  can  be  seen  from  Fig. 5. I n   t h i s  

f i g u r e ,   t h e   t r u e   d i s t r i b u t i o n  of p a r t i c l e s  i s  a modified  Junge 

3000 
TRUE  DISTRIBUTION,  MODIFIED  JUNGE 

\ 
"_ INITIAL GUESS,  JUNGE, ZJ = 2.0 
"_ I st SOLUTION 

FINAL SOLUTION 

ZERO  ERROR IN OBSERVATIONS 1 "_" 
IUU - 

10 - 

I -  

. I  - 

, o J l  I I I I I I I 1  I 1 ' 1  I I I I I I I 1  
,0457 ,0832  . I51  .275 .501 ,912 1.66 3.02  5.50 

RADIUS, W 

F i g .  5. Inversion  results  for zero  error i n  observations 

f o r  modified Junge distribution. 
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distribution,  called  distribution X, in  which a parabola,  given  by 

a dn/dr = a(rl - r) + b was  assumed  for r I 0.103  and a Junge 

distribution  with v* = 2.5 was  assumed  for r 2 0.103 p .  The  con- 

stants a and b were  determined  by  setting  dn/dr  and  d/dr(dn/dr) 

equal  for  both  distributions  at r = 0.103 p .  As  an  initial  guess 

for  the  weighting  functions, a straight  Junge  distribution  with 

v* = 2.0 was  employed.  Again,  zero  error  was  placed  in  the  obser- 

vations. As can  be  seen  from  the  figure,  an  excellent  solution 

resulted,  even  at  the  smaller  sizes  where  the  distribution  departed 

markedly  from a Junge  type. 

Figures 6, 7, and 8 present  results  in  which  random  errors 

of 1%' and 2% were  put  into  the  observations,  in  addition  to  the 

"zero  error"  results.  For  the  sake  of  clarity,  only  the  final 

solutions  are  shown  in  these  figures.  Figure 6 is  for a straight 

LI 
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.I12 ,204  .372  ,676 1.23 2.24  4.07 7.41 

RADIUS, pm 

F i g .  6 .  Inversion  solutions for a Junge distribution w i t h  

V *  = 2.5, w i t h  zero, 1% and 2% errors i n  the observations. 
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F i g .  7 .  Inversion  solutions for a Junge 

distribution' w i t h  distribution X ,  with zero, 

1% and 2% errors in  the  observation. 
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distribution with distribution Y ,  w i t h  zero, 
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Junge  dis t r ibut ion  with V* = 2.5.  A s  can  be  seen,  the  presence 

of e r r o r s  up t o  2% degrades  the  solut ion  only  s l ight ly ,   and,   in  

gene ra l ,   t he   r e su l t s  show excellent  agreement  between  the  true  and 

computed d is t r ibu t ions .   F igure  7 shows r e s u l t s   f o r   d i s t r i b u t i o n  

X except   for  these ca l cu la t ions , a  much worse i n i t i a l   g u e s s  of 

V* = 4.5 w a s  used as compared with  the resul ts  shown in   F ig .  5. 

By comparison  of t he   f i na l   so lu t ion   w i th  no e r r o r   i n   F i g .  7 t o  t h e  

f ina l   so lu t ion   of   F ig .  5, 'it can be seen   tha t  t h i s  worse i n i t i a l  

guess   de f in i t e ly   l eads   t o  a poore r   f i na l   so lu t ion ,   pa r t i cu la r ly  a t  

the  smallest s i zes .  Even so, the f i n a l   s o l u t i o n s  must be con- 

s idered as qu i t e   s a t i s f ac to ry ,   w i th  no appreciable   degradat ion 

with  the  introduct ion o€ measurement errors ,   except   again a t  the  

smaller sizes.   Apparently  the  introduction of even  small   errors 

i n t o  the observations is enough t o   e s s e n t i a l l y   e l i m i n a t e   a l l   i n f o r -  

mation  content  about the smallest s i z e s ,  due t o  the  i n i t i a l l y  low 

content   inherent   in  these s i z e s  as previously  discussed. 

F ina l ly ,   i n   F ig .  8, results are presented for another dis-  

t r i b u t i o n ,   d i s t r i b u t i o n  Y.  For t h i s  a i s t r i b u t i o n  X was used  for 

r 5 1.3 w. Th i s  w a s  f i t t e d  t o  a Junge  dis t r ibut ion w i t h  V* = 3.0 

f o r 1 . 3  p I r 5 3.4 p m , w h i l e  f o r  r 2 3 . 4 ~  a Junge d i s t r i b u t i o n  

with V* = 1.1 w a s  assumed. The resu l t s   aga in   a re   cons idered  quite 

sa t i s f ac to ry .  For  zero  error and 1% e r r o r ,  it is noted   tha t  the 

so lu t ion  is ab le   t o   fo l low the abrupt  change  in  slope a t  3.4 w, 
while the 2% e r ro r ,   t he   cons t r a in t   r equ i r ed  ( i .e. ,  the value of 

y i n  Eqs. 10 and 11) is l a rge  enough so a s   t o   f o r c e   t h e   s o l u t i o n  

i n t o  a n e a r l y   s t r a i g h t   l i n e  on the  log-log  plot  of t he   f i gu re .  

This i s  t r u e  a t  the  small-s ize  end  of t h e   d i s t r i b u t i o n   a l s o .  Here, 

the  zero  and 1% er ro r   so lu t ions  are able to  somewhat fol low  the 

curvature of t he   t rue   so lu t ion ,   bu t   w i th  2% e r r o r  this fea tu re  is 

completely  lost .  



B. Solar Radiometer 

As mentioned e a r l i e r ,   v a l u e s  of the   ae roso l   op t i ca l   dep th  

as a funct ion of wavelength  also  contain  considerable  information 

concern ing   the   aerosol   s ize   d i s t r ibu t ion   and ,   therefore ,   invers ion  

techniques may be employed in   o rde r  to  recover   this   information.  

The in tegra l   equa t ion  which relates a e r o s o l   o p t i c a l   d e p t h   t o  an 

ae roso l   s i ze   d i s t r ibu t ion   can  be w r i t t e n   a s  

I 

T ( A )  = 1 J ar2Qt(r ,  A ,  m)n( r ,   z ldzdr  aer 
0 0  

where n ( r ,   z ) d r  is  now the   he igh t   dependen t   ae roso l   s i ze   d i s t r i -  

but ion,   m. the complex re f rac t ive   index   of   the   aerosols ,  and 

Q,(r,  A ,  m )  t he   ex t inc t ion   e f f i c i ency   f ac to r  from Mie theory.  

Upon performing  the  height   integrat ion,  Eq. (17) can be rewr i t ten  

as 

where n c ( r )  is  t h e  columnar s i z e   d i s t r i b u t i o n ,  i.e., t he  number of 

ae roso l s   pe r   un i t   a r ea   pe r   un i t   r ad ius   i n t e rva l   i n  a v e r t i c a l  

column through the atmosphere.  Thus, n (r)  i s  the unknown t o  be 

determined through  measurements of T ( A )  , m 2 Q t  (r ,  A ,  m )  being 
a e r  

t he  known kernel   funct ion i n  t h i s   c a s e .  

C 

In   ob ta in ing  n c ( r ) ,  t h e   i n t e g r a l   i n  Eq. (10) i s  again  replaced 

by a summation over   coarse   in te rva ls   in  r ,  each  of  which i s  com- 

posed  of   several   subintervals   as   descr ibed  in  the previous  section. 

In   o rde r   t o  examine t h e  spec i f ic   kerne l   func t ions  which r e s u l t  if 

that   procedure i s  applied  to  the  present  problem, l e t  n (r) = 

W(r)f (r)  where W ( r )  is a rapidly  varying  function  of r while. f (r) 

is  varying more slowly. With t h i s   s u b s t i t u t i o n ,  Eq. (18) becomes 

C 
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T ( A )  = 1" rr2Qt(r, A ,  m)W(r ) f ( r )d r  aer 

ar2Qt(r,  A ,  m)W(r)f ( r ) d r  
j =  1 - 

where t h e  limits have  been made f i n i t e   w i t h  rl = r and r 

r and f ( r )  is  assumed constant   within  each  coarse   interval .  A 

matrix  equation  of  the form  of Eq. (7)  t h u s   r e s u l t s  where 

a 
- 

q + 1- 

b' 

gi = Taer(Ai)  (i = 1, 2 ,  ... , p)  

Writing Eq. (20) a s  a quadrature   over   the  subinterval  from r t o  

'j + 1 resul ts  i n  an  expression  with  weighting  €unctions 

wk . ( r k  . ) = W ( r k j  ) Arkj. and rk are '   the   midpoint   radi i  of each of 

the  k subin terva ls , .  and are employed i n  an   ident ica l  manner t o  

those  previously  described. The  unknowns t o  be solved  for are t h e  

f (r . ) , one value  for  each of t he   l a rge r   i n t e rva l s .  

j 

3 3  j 

3 

The in i t ia l   weight ing   func t ions  were  again assumed t o  be a 

Junge s i ze   d i s t r ibu t ion   g iven  by Eq. (15) .   In   p rac t ice ,   severa l  

d i f f e ren t   va lues  of v* a re   u sed   t o   ca l cu la t e   t he   ze ro th   o rde r  

weight ing   func t ion   and   the   f ina l   resu l t s   a f te r   success ive  itera- 

t ions  are   intercompared. .  One t e s t  of  the  procedure is  the  simi- 

l a r i t y  of   the   resu l t s   ob ta ined  when d i f f e ren t   va lues  of V *  are 

used  for   the W 
k .  
j 

In  both  inversion  problems  described, a proper   select ion  of  

the  magnitude  of  the  constraint ,  a ,  is of some importance. 

Although idea l ly   the   va lue   o f  a is  c lose ly   re la ted   to   the   expec ted  

va lues   o f   the   e r rors ,  E ,  i n   p r a c t i c e  it has  been  found t h a t  a 

se l ec t ion  of a on t h i s   b a s i s  i s  not  always adequate. The procedure 



used i n   t h e  work to   fol low  has   been  to   vary 2 through a broad 

range  of  values  about i ts  expected  value from  an estimate of t h e  

e r r o r s   i n   o r d e r   t o   o b t a i n  a minimum value,  which y i e l d s  an 

acceptable  solution: An acceptab le   so lu t ion  i s  one i n  which a l l  

values  of the  unknown are p o s i t i v e  numbers. Values  of a too  small 

no rma l ly   r e su l t   i n   h igh ly   o sc i l l a to ry   so lu t ions  and physical ly  

unacceptable   negat ive  values   for  some o f   t he   f ' s ,   wh i l e   t oo   l a rge  

a value  of a obviously w i l l  cause the  s o l u t i o n   v e c t o r   t o  be domi- 

nated by the   cons t r a in t .  

Figure 9 presents   kerne l   func t ions  .rrr2Qt(r, X ,  m ) W ( r )  f o r  

150 

125 

100 

- 
A 
I 75 
a - 
Y 

5 0  

25 

M = 1.45 - i (.001) 
f= 3.00 
WAVELENGTH 

I. 0.4400 
2..0.6120 

3. 0.0717 

0.02 0.1 I .o 5.0 
RADIUS, p m  

Fig. 9.  Kernel functions (rr2p,)  for  f o u r   v a l u e s  of X and 
-7 

for  m = 1.45-00 i'. 
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F i g .  10. Modified  kernel  functions  for the l a s t  i t e ra t ion   i n  

the  inversion scheme resulting  from  the  size  distribution as given 

in   t he   i n se t .  

four  values  of X and  for m = 1.45-00  i.  For  this  case  W(r) = 

cr with v* = 3.0. As can  be  seen  from  these  kernels 

there  apparently  is  information  as  to  particle  number  between  radii 

of a few  tenths  of a micrometer  out  to  approximately 1 micrometer 

However,  with  the  present  technique,  successive  iterations  produce 

new  kernels  which  are  the  products  of  the  old  kernels  and  the 

inverted  size  distribution  from  the  previous  iteration.  Figures 

10 and 11 present  kernels  for  the  last  iteration  for  two  actual 

cases.  Figure  10,  for  October 24, 1975,  presents  such a kernel 

- (v*  + 1) 
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where the  weighting  function on t h e  last  i t e r a t i o n  is as given by 

the   i n se t   i n   t he   uppe r   l e f t -hand   co rne r .   In   t h i s  case, the  range 

of  information  content i s  ac tua l ly  smaller than   t he   s t a r t i ng   ke r -  

ne l   func t ion   (F ig .  9 ) .  However, t h i s   k e r n e l  i s  a r e s u l t   o f   t h e  

ra ther   narrow  s ize   dis t r ibut ion,   log-normal   in   type,   depicted  in  

t h e   i n s e r t ,  and  one would not  expect  information  over a broader 

range  of  sizes. 

Figure 11 shows ke rne l s   r e su l t i ng  from a r a t h e r  common type 

of s i ze   d i s t r ibu t ion   func t ion  commonly observed  in   our  work t o  

date.  It  has  the  appearance  of a Junge type of   d i s t r ibu t ion   wi th  

49 0 



a  log-normal  type  superimposed.  The  kernel  functions  resulting 

from  this  type  show  a  marked  contrast  to  the  previous  two  figures. 

There  appear  to  be  two  regions  of  maximum  information  content,  one 

for  radii  somewhat  less  than 0.1 pm,  and  another  for  radii  between 

about 0.7 pm  to  about  1.5  pm.  Under  any  conditions,  it  is  apparent 

that  with  the  current  selection  of  wavelengths,  the  solutions  are 

limited  in  information  to  sizes  below  approximately 1 to 1.5p. 

Inversion  results  for  sizes  beyond  this  (for  the  case  of  solar 

radiometry)  are  dictated,  for  the  most  part,  by  the  constraints 

that  are  applied. 

111.  RESULTS 

In  this  section,  results  from  actual  data  will  be  presented. 

In  the  case  of  radiometer  results,  large  numbers  of  successful 

inversions  have  been  obtained  from  which  only  a  few  typical  ones 

have  been  selected.  A  limited  number of bistatic  lidar  inversions 

obtained  from  two  cases  are  selected  on  days  when  both  radiometer 

and  lidar  inversions  were  obtained. 

Figure  12  shows  a  plot  of  the  measured  aerosol  optical  depth 

as  a  function  of X on  the  left-hand  side  and  the  resulting  inverted 
size  distribution  function  on  the  right.  The  three  different 

curves  are  for  three  different  initial  weighting  functions,  W(r), 

in  each  case  a  Junge  distribution  with  exponents V *  = 3.05,  3.55, 

and  4.05.  The  three  different  solution  are  presented  in  order  to 

demonstrate  the  insensitivity  of  the  final  results  to  the  initial 

guess.  Although  all  cases  do  not  show  this  excellent  agreement,  in 

most  cases  the  agreement  is  considered  to  be  more  than,adequate.  In 

general,  the  solution  which  produces  values  of  the  aerosol  optical 

depth  in  best  agreement  with  the  measurements,  in  a  least  squares 

sense,  is  the  one  accepted.  Figure  12  demonstrates  a  size  distri- 

bution  function  fairly  close  to  a  Junge  type.  Aerosol  optical 

depths  can  be  seen  to  be  around 0.10 in  the  mid-visible  and  demon- 

strate  a  nearly  linear  decrease  with X. 
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F i g .  12 .  Le f t -hand  side shows m e a s u r e d   a e r o s o l   o p t i c a l   d e p t h  

a s  a f u n c t i o n  of X while the r i g h t - h a n d  s i d e  shows the r e s u l t i n g  

inversion  for a e r o s o l  s i z e  d i s t r i b u t i o n  f o r  Augus t  13 ,  1975 d a t a .  

Figure  13 shows q u i t e  a d i f f e ren t   s i t ua t ion .   Fo r - th i s  case, 

the   aerosol   op t ica l   depth  was extremely  low,  about 0.03 i n   t h e  

red-v is ib le ,  and shows a nonl inear   increase  with X .  This  type 

of T vs.  A behav io r   r e su l t s   i n   t he  log-normal  type  of d i s t r i -  

but ion  depicted  in   the  r ight-hand  s ide of t he   f i gu re .  Again, t h e  

three in i t i a l   f i r s t   guesses   y i e ld   so lu t ions   i n   exce l l en t   ag ree -  

ment. The sha rp   peak   i n   t h i s   s i ze   d i s t r ibu t iqn   func t ion  a t  about 

r = 0.8 pm would g ive   u se   t o  a peak i n   t h e  T vs.  h curve a t  a 

value  of h s l i g h t l y   g r e a t e r   t h a n  1.0l.m due t o   t h e   f i r s t  peak i n  

the  Mu va lues   fo r  Q Thg measured values  of T seem t o   i n d f -  

c a t e  a peak would be  reached i n   t h i s   r e g i o n   i f  measurements were 

extended  out  to  longer  wavelengths. 

aer 

aer 

T' a e r  

Figure 1 4  shows ye t   another   qu i te  common s i z e   d i s t r i b u t i o n  

funct ion commonly observed  over  Tucson,  Arizona. It appears t o  

be a Junge  type'wlth a log-normal  type  superimposed. The T~~~ vs. 
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F i g .  1 3 .  Left-hand s i d e  shows  measured  aerosol  optical  depth 

a s  a func t ion  of X while the   r ight -hand  s ide  shows the r e s u l t i n g  

invers ion  for aerosol  s ize  d i s t r i b u t i o n  for October 2 4 ,  1975. 
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Fig. 1 4 .  Left-hand  side  shows  measured  aerosol  optical  depth 

as  a func t ion  of  X while   the  r ight-hand  s ide  shows the r e s u l t i n g  

i n v e r s i o n  for aerosol  s ize  d i s t r i b u t i o n  for November 20,  1975. 
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A measurements  which  give rise t o   t h i s  type o f   d i s t r i b u t i o n  are 

curved in  an  opposite  sense  to  those  of  F,igure  13,  as can  be  seen 

from the   f i gu re .  The th ree   i n i t i a l   guesses   aga in   y i e ld   s a t i s f ac to ry  

agreement. 

Figure  15 shows a series o f   s i ze   d i s t r ibu t ion   func t ions  as 

determined on four  successive  days.   Although  the  values  of T ~ ~ ~ ,  

were q u i t e   d i f f e r e n t  on each  of  the  days,  they a l l  exh ib i t  a simi- 

l a r  shape,   consis tent   with  the -c vs. A curves shown on t h e  left-  aer 
hand s ide   o f   the   f igure .  

Figure  16  demonstrates  another series of three days. The 

f i r s t  day  of t h i s  series was extremely  c lear   with  very low aerosol  

op t ica l   depths  and was followed by a  mild  episode  of  blowing  dust 

on t h e  second  day  which r e su l t ed   i n   ae roso l   op t i ca l   dep ths  and w a s  

followed by a mild  episode of b1owi;g dus t  on the  second  day  which 

resu l ted   in   aerosol   op t ica l   depths   o f   about  0.15 t o  0.20. On the  

I .O( 

Ll 0.K 
a, 
la 

P 

0.0 

IO'C 

'lo9 

108 

lo5 

lo4 

3 NOV 1975 
0 " - 0 4 N O V  1975 
&--.-A 5 NOV 1975 

\ &.......a 6 NOV 1975 
'. 

I I I 

0. I 1.0 5.0 

r, P m  

F i g .  1 5 .  M e a s u r e d   a e r o s o l   o p t i c a l   d e p t h s   a n d   r e s u l t i n g  inver- 

sions for aerosol s i ze  d i s t r i b u t i o n  on f o u r   s u c c e s s i v e   d a y s .  
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F i g .  1 6 .  M e a s u r e d   a e r o s o l   o p t i c a l   d e p t h s   a n d   r e s u l t i n g  inver- 

sions f o r  a e r o s o l  s i z e  d i s t r i b u t i o n   f o r  a t h r e e - d a y   p e r i o d  i n  

wh ich  a d u s t   s t o r m   o c c u r r e d  on the second day .  

third  day  the  optical  depth  recovered  to  almost  its  previous  level, 

but  its  variation  with X was  considerably  different.  The  size 

distributions  resulting  from  inverting  these  three  days  are  quite 

interesting.  On  the  first  day,  prior  to  the  blowing  dust  episode, 

a fairly  common  size  distribution  was  in  evidence,  a  Junge  type 

with  a  log-normal  superimposed.  During  the  blowing  dust  episode, 

this  changes  to  a  very  broad,  log-normal  type  with  a  peak  at a few 

tenths  of  a  micrometer.  On  the  third  day,  the s i z e  distribution 

function  is  again  log-normal  in  type,  but  much  narrower  and  with  a 

peak  at  about 0.6 pm. 

- 

There  is  undoubtedly  much  information  to  be  gleaned  from  con- 

tinued  studies  of  these  size  distribution  functions  and  their 

variations  with  meteorological  conditions  and  their  evolution  with 

time.  These  results  are  presented  here  only  to  indicate  the  type 

of  information  which  may  be  obtained  from  inversions  such  as  these. 
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F i g .  17.  Inversion for a e r o s o l  s i z e  d i s t r i b u t i o n  on the same 

d a y   a s   o b t a i n e d  from b i s t a t i c   l i d a r   a n d   s o l a r   r a d i o m e t e r .  

Fina l ly ,   in   F igs .   17  and  18,   inver ted  aerosol   s ize   Zis t r ibut ion 

func t ions   a re   p resented   for  two days  comparing results obtained 

from solar  radiometer  data  with  those  obt.ained from b i s t a t i c   l i d a r  

da ta .   In   F ig .   17 ,   bo th   invers ions   resu l ted   in   s ize   d i s t r ibu t ion  

€unctions similar t o   t h e  Junge-log-normal types presented earlier. 

While the  agreement  between  th6 two sets of   data  is  no t   pe r f ec t ,  it 

is  f e l t   t h a t   t h e y  are similar enough t o   l e n d   s u p p o r t   a s   t o   t h e  

r e l i a b i l i t y  of t h i s  work. In   F ig .   18 ,   i n   add i t ion   t o   t he   l i da r  and 

radiometer   inversions,  a t h i r d   d i s t r i b u t i o n  is  presented.   This   dis-  

t r i b u t i o n   r e p r e s e n t s   t h e   b e s t   f i t   t o   t h e   o p t i c a l   d e p t h  measurements 

that   could  be  obtained from a two-slope  s ize   dis t r ibut ibn  funct ion,  

t h e   d e t a i l s   o f  which  need not  be g iven   here .   In   th i s  case, a l l  

t h ree  methods y i e ld   a lmos t   i den t i ca l   s i ze   d i s t r ibu t ion   func t ions ,  

which  on t h i s   p a r t i c u l a r  day is  a "modified" Jun,ge type. 
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F i g .  1 8 .  Inversion fo r  a e r o s o l  s i z e  d i s t r i b u t i o n  on the same 

d a y   a s   o b t a i n e d   f r o m   b i s t a t i c   l i d a r  and s o l a r   r a d i o m e t e r   e x c e p t  f o r  

a di f ferent  day   and   a s  a t h i r d ,  best f i t ,  d i s t r i b u t i o n   a l s o .  

The previous  examples  are  presented  in  order  to  demonstrate 

the  potential  utility of remote  sensing  and  inversion  techniques. 

Aerosol  size  distribution  functions  are,at  best,  difficult  to 

measure  directly.  Furthermore,  direct  measurement  methods  are  gen- 

erally  much  more  time  consuming  and  costly,  factors  which  render 

more  or  less  continuous  monitoring  almost  impossible.  With  the 

remote  sensing  techniques  described  here,  continuous  monitoring, 

weather  conditions  permitting,  is  almost  as  easy  as,  say,  monitoring 

solar  radiation.  It  is  felt  that  with  the  greater  abundance  of  data 

which  is  available  through  these  techniques, it will  be  po,ssible  to 

learn  more about the  properties  of  atmospheric  aerosols  in a shorter 

time  than  has  heretofore  been  possible. 
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DISCUSSION 

Pearce: That  dust  storm  graph--1 w a s  so r t   o f   su rp r i sed   t o  see t h e  
small pa r t i c l e s   hav ing  been  swept away by the  storm. Do you have 
a l o t   o f   c o n f i d e n c e   t h a t   t h a t  is a real e f f e c t ?  

Herman: This   par t icu lar   dus t   s torm w a s  no t   loca l ly   genera ted  as 
you can t e l l  by the   op t i ca l   dep th .  The most common dust   s torms  in  
Arizona are those   genera ted   in   the   Cal i forn ia   deser t  and they blow 
i n  from there .  We do  on  occasion  get  locally-generated  dust  but 
on t h i s  particular case the   op t ica l   depth  w a s  about0.15 which ind i -  
ca t ed   t ha t  it w a s  from a d i s t an t   sou rce - - r e l a t ive ly   d i s t an t  as 
opposed t o  blown  up loca l ly .  The only  explanat ion  that  one  could 
g ive   fo r  it i s  t h a t  some o f   t he   l a rge   pa r t i c l e s  have f a l l e n   o u t  
and some of  the  smaller  ones had coagulated. The drop  off  here I 
can ' t   expla in   o ther   than   tha t ' s  what we got .  Now, it may be j u s t  
a poor  inversion; I don ' t  know, but  we t end   t o   be l i eve  it u n t i l  .we 
f ind   reason   no t   to .  On the   o ther   s ide ,  however, t he re  are j u s t  
l a r g e r  number dens i t ies   bu t   the   shape  from t h e  peak  on  over is 
exac t ly  what we g e t   t y p i c a l l y  from  which we th ink  is l o c a l l y  gen- 
e ra ted   dus t .  What our   fee l ing  i s  t h a t   t h i s  i s  a dust  storm from a 
d i s t an t   sou rce ,   bu t  I can ' t   expla in  why the  drop  off  on t h e  l e f t .  
But  on  the  r ight I th ink  it i s  jus t   s imply  a case of  most  of t h e  
l a r g e   p a r t i c l e s  have f a l l e n   o u t  and t h a t  is j u s t  what i s  l e f t   o v e r .  

Twittyr My quest ion is  r e a l l y   t h e  same th ing ,   because   t ha t   r ea l ly  
bothers  me .  Curren t   theor ies   say   tha t   the   l a rge   par t ic les   a re ,  
i n   f ac t ,   l oca l ly   gene ra t ed   dus t   o r   l oca l ly   gene ra t ed   su r f ace   sou rces  
of some kind  and  the small p a r t i c l e s  are of a d i f f e r e n t   o r i g i n  and 
t h a t  t h e  two are more or less independent. So we expec t   t h i s   o the r  
bump j u s t   t o  add  on t o   t h e  one t h a t  i s  a l ready   there .  So the ques- 
t i o n  is ,  what i s  your   source  of   that   small   par t ic le   set?  How do 
you account for the  Rayleigh  scat ter ing? 

Herman: We have a c a l i b r a t e d * l i d a r .  

Twitty: It is  not   l idar   though.  

Herman: Excuse m e .  Okay, t h i s  i s  not  the  comparison. The C a l i -  
b r a t ion  on the  radiometer is done. . . I   can ' t  t e l l  you r i g h t  now. 
I c a n ' t  remember how it i s  ,done. The radiometer, however, is  caii- 
b r a t e d - t o  where w e  know the   s igna l  due to   the  Rayleigh amount. It  
is  ca l ib ra t ed  so t h a t  w e  can   subt rac t   ou t   the   Rayle ig i   sca t te r ing  
from it. The l i d a r  is ca l ibra ted   wi th  a pulse  t q  pu l se   ca l ib ra t ion ,  
which g ives   us  a monitor  of  the power in   each   pu lse  and  then w e  
c a l i b r a t e  it a t  the   h ighes t   l eve l   for   the   Rayle igh   ca l ibra t ion .  

Twit ty:  Now what, r ea l ly   ' bo the r s  m e ,  you go back t o  your  weighting 
func t ion   fo r   t ha t   i hve r s ion .  I don ' t  know whether you can  f ind 
that eas i ly .  
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Herman: I don't  think I have  one  for  that  day. 

T w i t t y :  No  but  you  have  one... 

Herman: That  type of size  distribution? 

T w i t t y :  That  is  similar.. 

Herman: The  one  with a large mount of  particles?  (showing  graph ) 
1 

T w i t t y :  Yes.  And  the  effect  which  of  course  produces  the  rapidly 
decreasing  distribution  causes  the  number 1, which  is  the  short 
wavelength, 2, 3 ,  4,  to  decrease  very  rapidly  in  the  weighting 
function.  It  could  be  explained  if  you  are  not  subtracting 
sufficient  amount  of  Rayleigh.  That's  the  equivalent  to  if  you 
have a little  bit  less  Rayleigh  at  number 1, which  is 0.44 pm, 
then  that  would  bring  that  whole  signal  down. 

Herman: Oh,  yes,  improper  calibration  could  cause  this  to  happen. 

T w i t t y :  It  could  have a very  great  effect  on  that  part. 

Herman: I don't  argue  that  point.  It  is  certainly  true.  We  feel 
we  .have  the  best  possible  calibration  that  can  be  done on it. 
Now I am not  saying  this  is  gospel.  This  is  the  result of what 
we  have  been  getting.  We  are  aware of these  problems--calibration 
problems  and so forth,  and  any  of  these  things  can  throw  this 
inversion  or  any  inversion  off. And you  are  absolptely  right. 
But  then  this  would  have  been  the  case  on  the  other  days  when  we 
didn't  get  the  small  particles. 

T w i t t y :  Not  if  on  those  days  you  have  substantially  greater 
optical  depth so that  it  essentially  swamped  out  that  day. 

Herman: I don't  know  what  the  optical  depth  was  on  this  day. I 
don't  think  it  was  listed.  But  we  can  find  it  though--at  least 
we  can  find  comparisons.  They  are  not  that  much  different.  The 
worst  optical  depth  case  we  presented  was  0.15;  most  of  them  are 
in  the  0.05  to 0.1. Now  this  case  was  not a 0.3 or 0.4 optical 
depth  case. 

T w i t t y :  That  case  was a very  thin  optical  depth  case,  right? 

Herman: This  was  thin,  but  the  dust  case  was  about  0.15.  Now 
when  we  have  locally  geyerated  dust  storms  we  get  up  to 0.3 or 
0.4 or  higher.  The  0.15  is  moderately  hazy.  It is not  extreme. 
I wouldn't  call  that  perturbed. 

~- 

'See Fig. 11 in  this  paper. 
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Twitty: That is still cons is ten t   wi th  my concern  about  the Cali- 
bra t ion .  And I might make a comment about   these  kinds of p l o t s ,  
because I think  those  kinds  of   plots  are r e a l l y   e x c e l l e n t .  I 
looked a t  those a l o t  when I w a s  doing  inversions,  because  your 
weighting  functions l ike  t h a t  are r e a l l y  your   d i s t r ibu t ion  of t h e  
s igna l   wi th  respect t o   t h e   s i z e  you are t ry ing . to   de te rmine .  And 
you can   p ick   r igh t   o f f  'of t h a t  where you c lear ly   have  no infor -  
mation  with respect t o   s i z e   i n   t h e   f i n a l   d i s t r i b u t i o n   a s  you have 
no s igna l  coming  from s i z e s   o f   t h a t  class. It comes r i g h t   o u t  of  
t he   r e su l t   o f   t he   i nve r s ion .  

Herman: I t h i n k   t h a t  when we g e t  below c e r t a i n l y  a few ten ths   o f  
a micron  and  above  about 2 microns, as I sa id  earlier, I think 
the re  are certainly  questions  here.   But I do  think w e  have infor -  
mation  between a few t en ths  of a micrometer  and  one o r  two micro- 
meters. It i s  my f e e l i n g   t h a t  there is  some t r u t h   t o   t h e s e   i n v e r -  
s ions  over   that   s ize   range.   There is  no way f o r  anybody to   s ay  is  
it r i g h t   o r  wrong. The only way ta Ever p rove   t h i s  i s  t o  make simul- 
taneous  measurements by several   techniques  or  go up and sample it 
d i r e c t l y  the same time you make an  inversion. We a l l  know t h e  
l i m i t a t i o n s   t o   t h i s .  

Twomey: I would j u s t  l i k e  t o  comment t h a t  under  the  conditions of 
blown dust   in   Arizona when your v i s i b i l i t y ,   s a y ,   i n   t h e . C a t a l i n a  
Mountains and such, is grossly  poorer   than what is  normally some- 
times t o t a l ,   t h e   p a r t i c l e   c o n c e n t r a t i o n  as measured by  a p a r t i c l e  
counter   invar iab ly   in  my experience is low. Now t h a t ' s   q u i t e   i n  
agreement  with  what you  show up there  with  reduced number of small 
p a r t i c l e s .  And, i n   a e r o s o l   p h y s i c s   t h i s  is  a ve ry   anc ien t   r e su l t .  
There was a gentleman.back  in 1916 who beat a c a r p e t   i n  a room f o r  
half  an  hour  and was v e r y   s u r p r i s e d   t o   f i n d   t h a t   h i s   t o t a l   p a r t i c l e  
concentration.was less a t   t h e  end  of t h i s   ep i sode .  H i s  lungs were 
worse! But t h e   t o t a l   p a r t i c l e   c o u n t  went down. 

Barkstrom: I have a ques t ion   tha t  is  related t o   t h e   t h i n g   t h a t  
Jerry Twitty  asked. First of a l l ,  I ' d  l i k e  t o  know i f  t h i s  i s  
what D r .  Rodgers would c l a s s i f y  as a messy nonlinear  problem, 
you  know, the  worst   kind? And, i f  so, how we can go about cal- 
cu la t ing   an   e r ror   bar  on each  of  those  inverted  data? 

Herman: I d i d n ' t  show these.  We have  done e r ro r   ba r s  on these .  
We have e r ro r   ba r s  on the opt ical   depth  determinat ion and then w e  
have e r r o r   b a r s ,   a t   l e a s t  a crude  estimation, on t h e   s i z e   d i s t r i -  
bution, which I d i d n ' t  show here.  

Barkstrom: Y e s ,  bu t   i n   l i gh t   o f   t he   non l inea r  problem  associated 
wi th   t he   ca l ib ra t ion ,  is  the re  a problem  connected  with  the error 
b a r s   t h a t  you g e t   o u t  of t he   l i nea r   e s t ima te?  

Herman: Who are you asking? 
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Barkstrom: I'd  like  to  sort  of  ask  Dr.  Rodgers as well. 

Rodgers :  I was  going  to  ask  you  about  this  one as well! It 
wasn't  very  clear  to  me  whether  you  had a linear  problem  or a non- 
linear  problem. 

Herman: This  is a linear  problem  but  we  are  iterating  because  we 
are  trying  to  bootstrap up  our  weighting  function  guess. 

Rodgers :  Well,  if  you  have  to  change  the  weighting  function,  then 
it is not a linear  problem. 

Herman: We  are  making a first  guess  to  perform  that  integral  of 
the  kernel  which  we  can't  do  analytically.  We  have  to  make  some 
type  of  weighting  function  guess  to  provide a proper  integration 
over  the  kernel  function.  Otherwise,  if  we  use  just  large  inter- 
vals,  we  have a very  poor  representation  of  the  kernel. 

Rodgers: The  equations  are  linear? 

Herman: The  equation-itself,  if  we  could  do  the  integral  properly, 
would  be  linear.  We  could  do  it  in  one  iteration. 

Rodgers:  Yes, so the  problem  is  one  of  integrating  ,over a peculiar 
kernel? 

Herman: That  is  the  basic  problem  in  particularly  the  lidar  case 
but  also  in  the  radiometer. 

Rodgers :  I still  don't  really  understand  how  it  comes  out  non- 
linear  then? 

Herman: It  is  not a nonlinear  problem.  We  are  iterating  simply 
to  get a better  estimate  of  the  integral  over  the  kernel  function. 
We  could  get  the  answer  in  the  first  iteration  if  we  wanted,  but 
we  are  getting a better  estimate  as  we  iterate  on. I don't  think 
it  is  equivalent  to  making  it  nonlinear - I don't  think  you  can 
even  consider  it  equivalent  to  nonlinear. 

Rodgers :  Well,  if  it's  linear,  you  don't  need  to  iterate.. I just 
don't  understand  what  the  problem  is. 

Herman: Well, I thought I had  explained  the  technique  we  are  using. 
As I say,  we  do  not  have  to  iterate.  It  is  not  necessary. 
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THE  INVERSION  OF  STRATOSPHERIC  AEROSOL AND 

OZONE  VERTICAL  PROFILES  FROM  SPACECRAFT 

SOLAR EXTINCTION  MEASUREMENTS 

William  P.  Chu 
01 d Domini  on  Uni versi t y 

This paper analyzes  the  inversions  of  multi-channel 
solar  extinction measurements i n   t he  0.35-1.0 pm wavelength 
region to  retrieve  stratospheric  aerosol and ozone vertical 
profiles  using  both  the  constrained  linear  inversion scheme 
and the  i terat ive  scheme recently developed b y  Twomey . 
The inversions  of  the  multi-wavelength  solar  extinction d a t a  
obtained  from  spacecraft  have been  analyzed based on the 
inversion  of computer simulated d a t a  using  various  atmospheric 
models w i t h  d i f fer ing  amounts o f  aerosol and ozone in   the  
stratosphere. The sensit ivit ies  of   the  inversion schemes t o  
d i f ferent  experimental  errors  are  discussed i n  terms o f  
accuracy and resolution o f  the  retrieved  profiles. 

I. INTRODUCTION 

The  minor  constituents  in  the  stratosphere  have  received 

great  attention  in  recent  years  .because  of  concerns  over  their 

roles  in  affecting  the  global  environment.  With  mankind's 

increasing  activities  in  the  stratosphere,  such  as  supersonic 

transport  (SST)  and  Shuttle  missions,  and  ground-based  activities, 

such  as  those  involved  with  nitrogen  fertilizers,  an  increase  in 

stratospheric  aerosol  loading  together  with  the  removal of strato- 

spheric  ozone  are  possible  through  various  chemical  reactions. A 

realistic  assessment  on  this  problem is still  not  possible  due to 
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the  lack of information  on  the  distributions of most  of  the  con- 

stituents  in  our  atmosphere. 

This  paper  analyzes  one  of  the  atmosphe.ric  remote  sensing 

methods  using  spacecraft  solar  extinction  technique to retrieve 

stratospheric  aerosol a'nd ozone  vertical  profiies.  In  this  remote 

sensing  technique,  the  spacecraft  instrument  will  direct  toward 

the  horizon  and  measure  transmitted.  solar  radiant  intensity  in a 

number  of  spectral  intervals  with  wavelengths  from 0.38 to 1.00 pm. 

The  locations of  the  spectral  channels  are  selected  based  on  con- 

siderations  of  maximum  extinction  contribution  from  each  individual 

constituent,  interference  from  other  constituents,  and  available 

energy  for.measurements.  The  radiant  intensity  data  are  then 

inverted  to  produce  vertical  profiles  for  each  of  the  constituents. 

The  inversion  procedure  can  be  separated  into  two  steps.  The 

first  step  involved  retrieval  of the total  vertical  extinction  pro- 

files  at  each  spectral  interval.  The  second  step  then  separated 

the  contributions  from  each  constituent  using  the  multi-spectral 

extinction  data  at  each  altitude  level.  Examples  of  inverted 

results  from  simulated  data,  including  experimental  errors,  are 

presented  and  discussed  in  this  paper. 

11. EXPERIMENTAL  CONCEPT 

In  the  solar  extinction  experiment,  multi-wavelength  measure- 

ments  of  the  transmitted  solar  radiant  intensity  along  the  line  of 

sight  through  the  atmosphere  are  made  on  board  the  spacecraft. 

The  basic  geometry  is  illustrated  in  Fig. 1. As the  spacecraft 

emerges  from  Earth's  shadow;  the  radiometer on board  the  spacecraft 

will  point  to  the Sun, measuring  solar  radiant  intensity  at 

several  pre-selected  wavelength  regions.  In  this  paper,  we  will 

consider  the  radiometer  with a small  field of view  in  order  to 

achieve  higher  vertical  resolution.  The  radiometer  is  assumed  to 

either  lock  on a fixed  position  on  the  solar  disk  or  scan  across 

the  solar  disk  for  data  acquisition. 
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E A R T H  

SOLAR OCCULTATION GEOMETRY 

Io = 71 h T f e ) l  Is 

7 ( h T I  = E X P  { -  2 /  P ( h )  d P ( h ) )  
LAMBERT  -BEER  LAW 

hT 
P ( h l  - F X T I N C T I O N   P R O F I L E  

P ( h - REFRACTED  OPTICAL  PATH 

Fig. 1. Geometry of the solar extinction  experiment 

The  monochromatic  radiant  intensity  reaching  the  radiometer 

is  given  by  the  fundamental  equation  of  radiative  transfer  (Ref. 1) 

Equation (1) relates  at  wavelength X, the  radiant  intensity 
I (h ) measured  at  distance h to  the  radiant  intensity I (h ) at 

boundary h the  monochromatic  transmittance  TX(hz,hoi  and  source 

function  JX(h)  at  distance h along  path  from  hZ  to  ho. 

X 2  2, X 0  

0' 

For solar  extinction  experiment  with  spectral  channels  closed 

to  the  visible  region,  the  contribution  by  atmospheric  emission  to 

the  radiant  intensity  is  very  small  and  can  safely  be  neglected. 

The  radiative  transfer  equation  is  thus  greatly  simplified  to 
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where t h e   r a d i a n t   i n t e n s i t y   I A ( h  ) is  now t h e  solar radiant   inten-  

s i t y  and  TA(hz,ho) is the  transmittance-of  the  atmosphere  between 

the  Sun and the  spacecraf t .  

0 

In  the  wavelength  range from 0.3 to  1.0  micron,  atmospheric 

a t tenuat ion are predominantly  caused by aerosol , 'ozone,  and a i r  

molecules  (Rayleigh component) with  minor  contributions from NO 

water  vapor  and 0 molecules. Models of   the  s t ra tospheric   ext inc-  

t i o n   a s  a function  of  wavelength  profile  can  be  constructed from 

d i f f e ren t   ve r t i ca l   d i s t r ibu t ions   o f   ae roso l  and  ozone.  Figure 2 

shows an   ex t inc t ion   coef f ic ien t  model as a  function  of  wavelength 

a t  an   a l t i tude   o f   18  km. Notice  that  a t  most of  the  wavelength 

shown, the   to ta l   ex t inc t ion   cons is t s   o f   cont r ibu t ions  from aerosol ,  

ozone, and Rayleigh  components  with different   weights .  The 

weightings w i l l  a l s o  be d i f f e r e n t   € o r   d i f f e r e n t   a l t i t u d e   l e v e l s ,  

depending on the   d i s t r ibu t ions  of t he   d i f f e ren t   cons t i t uen t s .  

2' 

2 

A1 t i t u d e ,  18 km 
AEROSOL (MODERATE V6LCANlC 

NO, (1975) 

IU .a .5 .6 .7 .8 .9 1.0 1.1 
~~ ~ 

Wave1 ength ,lpmJ 

F i g .  2.  qxtinction a s  a f u n c t i o n  of w a v e l e n g t h  model W i t h  

a n   a 1   t i t u d e  of 18 km. 
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" . . 

If  we  made  the  assumptions  that  the  atmosphere.is  spherically 

stratified  and  spherically  symmetric,  the  transmittance  function 

T (h h ) will  then  be  given  by  the  Lambert-Beer  law  as x 2' 0 

where 8 (h)  is  the  atmospheric  extinction  coefficient  at  wavelength 
X as a function of vertical  height  h,  and  P(h,hT)  is  the  optical 
path  at  height h for  line  of  sight  with  tangent  height h 

x 

T' 
Equivalently,  the  optical  depth g (h  can  be  defined  as A T  

gx (hT) = Rn(l/Tx  (h2,ho) 1 

The  determination  of  vertical  extinction  profile  at  each  wavelength 

h required  the  inversion  of  the  integral  equation in Eq. (4). 

111.  INVERSION  TECHNIQUES 

A. Inversion  of  Measured  Transmittance  to  Total  Bxtinction  Pro- 

files 

In  Eq. (4) , the  measured  parameter g (h ) is  equal  to a kina ? L T  
of  convolution  of  the  weighting  function  aP(h,h  )/ah  with  the 

unknown  vertical  extinction  profile  BA(h).  The  integral  can  be 

approximated  with a sum  over n discrete  atmospheric  layers  with 

equal  thickness  and  assigning  to  each  layer  an  averaged  extinction 

coefficient 8 The  integral  equation  can  then  be  replaced  by a 

system  of  linear  equations 

T 

j' 

n 
gi = c 8 .  Pij 

" 

i = 1,2, ... m 
j = i  J 

where P is  the  optical  path  lexgth  in  the  jth  layer  with  tangent 

height  at  the  ith  layer.  Equation (5) can  be  abbreviated  into 

matrix form 

ij 

9 = PB (6) 
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where g is  the  column  vector  for  the  measured  optical  depth, B is 

the  column  vector  for  the  unknown  extinction  profile,  and P is  the 

optical  path  length  matrix. 

Equation (6) can  be  solved  directly  for B either  exactly  when 
d 

n = m or  in  the  least  square  sense  when n < m 

B = P  g 
-1 n = m  

B = ( P P )  P  g n < m  T T 

where  P-l  is  the  inverse  of P and  PT  is  the  transpose of P. The 

solutions  obtained  from  the  direct  inversion  are  generally  unstable 

due  to  the  presence  of  noise  associated  with  the  measured  parameter 

g. In  order  to  suppress  the  unphysical  oscillations  in  the 

inverted  solutions,  some  constraints  on  the  high  frequency  com- 

ponents  of  the  solutions  have  to  be  incorporated  in  the  inversion 

schemes.  We  have  analyzed  two  different  inversion  methods.  The 

first  method  is  the  linear  constrained  inversion  as  developed  by 

Twomey  (Ref. 2) and  Phillips  (Ref. 3) ;  the  second  method  is  the 

iterative  scheme  recently  developed  by  Twomey  (Ref. 4). We  will 

discuss  the  two  methods  separately. 

1. Linear  Constraint  Inversion 

The  solution  to Eq. (6) is  given  by  the  following  expression 

B = ( P P + y H )  P  g T -1 T 

where  normally H is  the  con,strained  matrix  and y is a constant 

smoothing  parameter.  In  our  analysis,  we  used  the  constrained 

matrix H which  minimizes  the  second  difference  of  the  solution. 

The  smoothing  parameter y whose  magnitude  is  proportional to'the 

noise  level  of  the  measurements  has  been  replaced  by a diagonal 

matrix  of  element y The  reason  for  using a variable  smoothing 

parameter y arises  from  the  nonlinear  expression  for  the  noise 

term  in  Eq.  (4).  Assuming  the  radiometer  has a noise  level e i 
associated  with  each  radiant  measurement Ii, the  deduced 

ii - 
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1. 
" . 

for e << T , we can  expand Eq. (9) and  obtain i i 

The  second  term  on  the  right  side  is  the  equivalent  noise 

level  for  the  parameter g Thus,  we  choose  the  matrix  element 

'ii 

i' 
as 

where y is a constant  parameter  to  be  adjusted  for  optimum 

inverted  solutions. 
0 

2. Iterative  Inversion 

The  iterative  method  starts  by  initially  assuming a guessed 

solution,  and  the  solution  is  continuously  updated  through  the 

following  iteration: 

where B ( k )  is  the  solution B at  k-iteration, r (k) is  the  ratio 

of  measured g to  the  computed g from  the  k-iterated  solution, i i 
3 j i 

and K is  the  normalized  weighting  function  aP(h,h  )/ah  where ij T 
Kij S 1. The  iterative  process  is  terminated  when  the  computed 

radiant  approaches  the'measured  radiant  to  within  the  instrument 

noise  level. 

B. Inversion of Multi-wavelength  Extinction  Profiles Ento 

Constituent  Profiles 

The  inversion  methods  discussed  in (A). will  generate  multi- 

spectral  extinction  vertical  profiles  from  the  multi-channel 
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extinction  measurements.  The  second  step  in  the  inversion  process 

will  be  to  separate  the  contributions  from  individual  constituent. 

For the  wavelength  region  of  interest,  the  total  extinction 

coefficient  at a fixed  altitude  level  can  be  written  as  the sum of 

contributions  from  aerosol,  ozone,  and  air  molecules  as 

where Bmol(Ao) is  the  Rayleigh  extinction  coefficient  at a refer- 

ence  wavelength X aXi is  the  wavelength  dependence  of  the 

Rayleigh  extinction,  bli  is  the  wavelength  dependence  of  the  ozone 

absorption  profile,  and Baerosol (A) is  the  aerosol  extinction  as 
a function  of  wavelength A. In  this  study,  we  have  assumed a 

two-parameter  model  for  the  description  of  the  aerosol  wavelength 

dependent  extinction  coefficient  as 

0' 

'aerosol ( A )  = A Act 

where A and ct are  the  two  parameters.  Substituting Eq. (14) into 

Eq,  (131,  we  then  have a system  of  nonlinear  equations  with  unknown 

Bmol 0 (A ) , 6 ( A  ) , A, and ct for  each  altitude  level.  -The  system 
0 0  

of  nonlinear  equations can'be solved  using  the  Marquardt  (Ref. 5) 

algorithm.  The  Marquardt  algorithm  is a minimum  search  procedure 

for a system  of  nonlinear  equations. An initial  set  of  guessed 

solutions  for  the  unknowns  is  updated  through  the  following 

iterative  equation 

where zk is  the  solution  vector  for  the  unknowns  at  the  k- * . 

iteration, FJg ) is  the  Pesidue  vector  for Eq. (13)  at  the k- 

iteration, J(x ) is  the  Jacobian  matrix  with  element J = afi/ax 

where f is  the  ith  nonlinear  equation. I is  the  identity  matrix, 

and X is a control  parameter  at  the  k-iteration.  The  control 

parameter A is adjusted  at  each  iteration  for  fast  convergence  to 

k 

k 
% ij j 

i TI 

k 

k 
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the  minimum.  The  iterative  process  is  terminated  when  the  dif- 

ference  between  two  consecutive  residue  squares  is  less  than 0.1%. 

IV.  INVERSION  RESULTS 

Inversion  results  have  been  obtained  from  applying  the 

inversion  techniques  discussed  earlier  to  simulated  spacecraft 

solar  extinction  measurements.  Several  models  of  the  aerosol  and 

ozone  profiles  were  used  to  generate  atmospheric  transmittance  pro- 

files  in  different  wavelength  regions.  Wavelengths  at 0.38, G.45, 

0.6, and 1.0 micron  were  chosen  to  coincide  with the four  spectral 

channel  locations  for  the  Stratospheric  Aerosol  and  Gas  Experiment 

(SAGE).  The  simulated  radiant  intensity  data  are  generated  from 

the  atmospheric  transmittance  profiles  by  incorporating  the  space- 

craft  geometry.  The  radiometer  is  assumed  to  have a field  of  view 

of 30 arc  seconds,  when  situated  on a satellite  at  an  orbital  alti- 

tude  of 600 km. A total  of 80 radiant  intensity  data  points  are 

generated  per  channel  covering  tangent  altitudes  from 10 to 50 km 

in  equal  increments  of 0.5-km height:  Each  data  point  is  simulated 

by  assuming  that  the  radiometer  is  pointing  to a different  location 

on  the  solar  disk. 

The  inversion or' these  radiant  profiles  was  then  performed  by 

introducing  experimental  errors  of  various  origin  and  magnitudes 

to  the  simulated  data.  There  are  three  types  of  erros  which 

directly  affect  the  inversion  results.  The  first  type  of  error 

is  the  bias  error  in  the  determination  of  the  exact  tangent 

heights  for  all  the  data  points.  The  second  type  of  error  is  the 

noise  associated  with  each  measurement.  The  third  type  of  error 

is  associated  with  the  uncertainty  in  knowing  the  pointing  angle 

of  the  radiometer  for  each  data  point.  This  pointing  error  will: 

result  in  both an erroneous  value  for  the  unattenuated  solar 

radiance  due  to  solar  limb  darkening  effect  and  an  erroneous  value 

for  the  instantaneous  tangent  height. 
w 
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The  three  types  of  errors'mentioned  earlier  in  different  nag- 

nitudes  were  added  to'the  simulated-radiant  data.  and  inversions 

were  performed.to  determine  the  sensitivity  of  these  errors on the 

inversion  results,  The  atmosphere  is  divided  into 45 homogeneous 

layers  of  0.5-km  thickness  between'10  and 21 km, and  increasing 
thicknesses  from  21  to 50 km. The  path  length matrix is  computed 

by  using a ray  trace  calculation  to  include  atmospheric  refraction 

effect . 
Figures 3 to 6 show  inversion  results  for  simu1ated:extinc- 

tion  measurements  using  the  linear  constrained  inversion  method. 

The  input  aerosol  vertical  profile  used  is  deduced  from an actual 

lidar  badkscattered  profile  with  vertical  resolution  of  0.15 lan. 
The  ozone  vertical  profile  used  is  similar  to  E1,terman's  model 

(Ref. 6) except  that  artificial  layering.  structures  were  added. 

The  Rayleigh  extinction  profile  is  also  deduced  from an actual . 

rawinsonde  temperature  and  pressure  profiles.  In  these  simulated 

measurements,  experimental  errors,  including  noise  levels  of 0.1% 

to  full  scale  radiant  intensity  and  pointing  uncertainty  of 3 arc 

seconds,  were  added  to  the  simulated  measurements.  The  inversion 

results  are  presented  in  terms  of  aerosol  vertical  extinction  at 

1.0 pm  .(Fig. 3) , ozone  vertical.  extinction  at 0.6 lJm (Fig. 4) , 
Rayleigh  vertical  extincti-on  at 0.38 pm  (Fig.  51,  and  aerosol 

optical  model  parameters  (Fig. 6). The  aerosol  optical  model 

parameter a is  assumed  to  be -0.8 between 17 and 20 km and  equal 
to -1.6 for  the  rest of the  altitude  range.  Inspections  of  Figs. 

3 to 6 indicate  that  both  aerosol  and  ozone  vertical  profiles  can 

be  inverted  with  good  accuracy  up  to an altitude  of 40 km. The 

poor  inversion  results  for  the  Rayleigh  profile  below 14 km are 

caused  by  the  rapid  decreasing  signal  level  at  the 0.38 pm  chan- 

nel. In Fig. 6, the  inverted  results  for  the  aerosol  optical 

parameter a within  the  Junge  layer  region  show  some  fluctuation 

and  no  inversion  results  can  be  obtained  above 20 lan due  to  the 

rapid  decrease of aerosol  concenkration  in  this  region. 
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Fig.  3 .  I n v e r s i o n   r e s u l t s  for a e r o s o l   v e r t i c a l   e x t i n c t i o n  

p r o f i l e   a t  1.00 pm. 
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0.38 pm 
0.0 km error 

E A .  3.0 arc sec 
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F i g .  5. Inversion r e s u l t s  for R a y l e i g h   v e r t i c a l  extinction 

p r o f i l e   a t  0.38 W. 
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F i g .  6 .  Inversion r e s u l t s  f a r  a e r o s o l   o p t i c a l   m o d e l  

parame ter  Q a s  I a f u n c t i o n  of a l t i t u d e s .  
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Figures 7 to 9 show  inversion  results  for  the  same  input 

models  except  that  the  noise  level  for  each  measurement  has  been 

increased  to 1.8% and  the  pointing  uncertainty  has  been  increased 
to 15 arc  seconds.  Both  the  inverted-results  for  aerosol  and 

ozone  profiles  show  considerable  decrease  in  resolution.  This 

behavior  is  consistent  with  the  inversion  technique  in  which  the 

smoothing  parameter a in Eq.. (11) is  increased  to  accommodate 

the  high  noise  level  in  the  measurements.  The  inversion  results 

for  the  aerosol  optical  model  parameter whicharenot shown  here 

are  similar  to  Fig. 6 exc.ept  larger  fluctuations  were  observed. 

0 

Figures 10 to 11 show  inversion  results  for a set of.dif- 

ferent aerosol-and ozone  vertical  profiles.  The  aerosol  profile 

is  deduced  from  the  first  published  lidar  observation  of  the 

Volcano  de  Fuego  eruption  (Ref.  7),showing  sharp  layering  struc- 

tures.  The  peak  layer  at 19 km is  approximately 0 . 5  km wide.  The 

inversion  cannot  reproduce  this  sharp  layering  structure  due  to 

the  integrating  effect  over  the  radiometer's  field  of  view. 

1.00 urn 
0.0 km error 
1 .O% noise FS 

z h  c, i20 

L 

lob t 

Aerosol ext inct ion,  km" 

F i g .  7 .  Invers ion  results for  a e r o s o l   v e r t i c a i   e x t i n c t i o n  

pro f i l e   w i th   increased   exper imenta l  'errors. 
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Ozone  extinction, km" 

F i g .  8 .  Inversion  results foz ozone vertical  extinction  pro- 

f i l e  w i t h  increased  experimental  errors. 

50 - 
- - 0.38 urn 
- 

qo - 0.0 km error 
- 1 .O% noise FS 

Molecular  extinction, km" 

F i g .  9 .  Inversion  results  for  Rayleigh  vertical  extinction 

pro f i le  w i t h  increased  experimental  errors. 
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F i g .  10. Inversion  results  for  aerosol  vertical  extinction 

pro f i le  w i t h  d i f f e ren t  aerosol  vertical  extinction  profile. 
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Ozone  extinction km" 
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F i g .  11. Inversion  results for owne  vertical  extinction 

pro f i le  w i t h  d i f ferent   owne  vert ical   ext inct ion  prof i le .  
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0.0 km e r r o r  
0.1% noise FS 
3.0 a r c  sec 

+ 

Aerosol extinction km" 

F-ig.  12 .  Inversion  results  for  aerosol  vertical  extinction 

profile  using  the  iterative  inversion scheme. 
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(1.0 lun e r r o r  
0.1% noi'se FS 
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- 1  

Ozone extinction km" ' 
F i g .  13. Inversion  results  for  owne  vertical  extinction 

profile  using .the i terative  inversion scheme. 
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Figures 12 and  13  show  the  inversion  results  using  the  itera- 

tive  method  as  discussed  in Eq. (12). The  atmospheric  model  and 

experimental  noise  levels  are  identical  to  those  as  shown  in 

Figs. 3 to 6. Comparison  of  the  inversion  results  in  this  case 

to  those  as  shown  in  Figs. 3 and 4 indicates  that  they  are  quite 

similar.  The  inverted  aerosol  profile  at  altitude  above 30 km in 

. this  case  shows  some  large  amplitude  oscillations.  This  is  expec- 

ted  as  the  noise  level  in  this  altitude  region  is  considerably 

higher  than  the  signal  level. 

Inversions  have  also  been  performed  on  simulated  data 

including  bias  errors  in  the  tangent  height  determination.  It  is 

found  that  bias  errors  will  produce a shift  in  altitude  scale  of 

the  inverted  profile  in  direct  proportion  to  the  bias  magnitude. 

V. CONCLUDING REMARKS 

This  paper  has  demonstrated  that  measurements  from  space- 

craft  solar  extinction  experiment  can  be  inverted  to  produce 

aerosol  and  ozone  vertical  profiles  from  cloud  top  up  to  approxi- 

mately 50 km altitude.  Analysis  of  the  inversion  results  from 

simulated  measurements  including  various  experimental  errors  indi- 

cated  that  the  resolution  of  the  inverted  profiles  will  be 

degraded  as  the  errors  are  increased. 

Both the  linear  constrained  inversion  method  and  the  itera- 

tive  method  have  been  used  for  the  inversion  of  solar  extinction 

measurements.  The  accuracy  of  the  inverted  results  from  the  two 

different  inversion  methods  are  similar. 
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SYMBOLS 

A 

bA 
e 

F ." 

gx 

E.  

Ix 

Jx 

h 

'I, 
I 

J 
'I, 

k 

K 

P 
r 

x, x 
a 
" 

Bx 
Y 
A 

'k 

T x 

coefficient  for  wavelength  dependence of Rayleigh  extinction 

model  parameter  for  aerosol  extinction  as  function  of.wave- 

length  dependence 

coefficient  for  wavelength  dependence  of  ozone  absorption 

noise  level 

residue  vector 

optical  depth 

distance 

constrained  matrix 

identity  matrix 

monochromatic  radiant  intensity 

Jacobian  matrix 

monochromatic  source 

iteration  number 

normalized  weighting 

optical  path  length 

radiant  intensity 

function 

ratio  of  measured  optical  depth  to  computed  optical  depth 

solution  vector  for  nonlinear  equations 

model  parameter  for  aerosol  extinction as function  of  wave- 

length  dependence 

extinction  coefficient 

smoothing  parameter 

wavelength 

control  parameter  for  iterative  solution  to  nonlinear 

equations 

monochromatic  transmittance 
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DISCUSSION 

Shet t le:  On  one  of  your  first  figures  where  you  show  the  optical 
thicknesses,  you  includ-ed  nitrogen  dioxide,  which  would  add a 
fifth  unknowri. I can't  recall  whether  that  was a . . . 
Chu: No,  that  was  not  in  the  simulation. 

Shet t le:  The  question  is,  would  it  add a significant  effect, 
particularly  when  you  start  trying  to  get  the  slope  of  the  aerosol 
extinction  versus  wavelength? 

Chu: If  we  assume  we  don't  know  anything  about  nitrogen  dioxide, 
it  will  contribute  some  error  to  the  slope  on  the  aerosol  curve. 
It  should  be  pointed  out  that  the  peak  nitrogen  dioxide  concen- 
tration  occurs  approximately  at 30 km; whereas  the  aerosol  peak  is 
around 18 to 20 km. There  is a spatial  discrimination  as  well  as 
a spectral  discrimination  utilizing  this  technique. 

Shet t le:  Yes,  except  you  are  not  looking  for  it  and  if  you  include 
it,that  would  give  you a fifth  unknown.  And  you  still  only  have 
four  wavelengths. 

Chu: In  fact,  on SAGE we  do  have  five  channels. 

McCormick: Yes,  very  recently  we  have  encountered  one  more  chan- 
nel  with  lower  vertical  resolution.  Dr.  Chu's  paper  addresses a 
four-channel  instrument  only. . 
Pepin: I would  like  to  comment  on  that  last  question.  The  fact 
that  the  NO2  contributes  only a small  amount  means  that  one  can 
correct  for it  quite  accurately  by  not  knowing  it  very  well  and 
subtract it out.  It's a percent  of a small  percent. 

Shet t le:  The  slope  of  the  aerosol  extinction  is  still  sensitive 
to  the  NO2,  because  it  is  probortional  to  the  change  in  the  extinc- 
tion  with  wavelength, so extra  extinction  will  add  to  the  error. 

Pepin: What I am saying  is  that  if  it  only  contributes  one  per-. 
cent  to  the  signal  and  if  you only.know  it to 50 percent,  then  it 
will  only  contribute.one-half  percent  to  the  inversion  problem  'in 
terms  of  signal. 

Green: Ben  Herman,  in  his  talk,  indicated  that if the  extinction 
due  to  aerosols  were  curved  upward,you  have  one-  characteristic 
shape  of  size  distribution  and  if  it  were  to  curve  downward, ' 

another.  What  does  the  effect  of  assuming a straight  line  have 
upon  your  inversion  procedure?  Is  it  then  strictly a single  Junge 
power  law  or bmad range or what? 
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Chu: You  mean  trying  to  approximate  the  aerosol  by a straight 
line? 

Green:  The  power  law,  the X Law? Q 

Chu: Well,  all  we  can  get  is  two  unknown  parameters.  We  are 
limited  by  the  channel  number.  We  have  four  measurements  and  we 
are  looking  for  four  unknowns.  This  is  about  the  maximum  we  can 
do. I don't  see  any  way.around  the  problem  besides  just  trying  to 
describe  the  aerosol as a two-parameter  model. Of course,it  might 
not  exactly  reflect  what  nature  is  doing.  But  according  to  the 
paper  that  Tom  Swissler  presented  about  two  days  ago,  the  two- 
parameter  model  is  quite  adequate  in  describing  most of the  size 
distribution. I mean  not  the  bimodal  ty$)e;,but  the  single  modal 
size  distribution.  Of  course,  there is some  sort  of  spread  in 
terms  of  measuremental  accuracies,  almost  quite  comparable  to  what 
we  are  seeing  here. 

Green:  Ben  had  quite a dichotomy. Am I correct  in  reading  your 
paper,  that  when  you  suddenly  had  an  upward  curvature  you  lost a 
peak?  And  when  you  had a downward  curvature, I guess  you  had  two 
humps? 

Herman: When  it  was  curved  this  way,  we  had  the  slope  with  the 
hump  on  it--the  Junge  with a hump  on  it.  When  it  was  curved  the 
other  way,  in  other  words,  high  in  the  middle  and  low  on  either 
end,  it  gave  kind of a log  normal.  Now  the  straightest  one  that 
we  have,  which  is  almost  straight  but  not  perfectly  straight,  gives 
not  quite  Junge, a little  bit of deviation  from  Junge.  But  don't  for- 
get  that  Junge  will  give a straight  line  from  zero  to  infinity  in 
size.  Our  size  limits  are  finite so you  wouldn't  expect  it  to  be a 
perfect  relationship. 

Pepin: I think  that  one  has  to  think  of  the  fact  that  the SAGE 
experiment  is  designed  to  look  at  the  stratosphere.  When  you  are 
looking  at  the  stratosphere,  then  you  have  to  ask  yourself  what 
kind  of  aerosols  are  present  in  the  stratosphere  in  terms  of  size 
distribution.  You  have  to  go  back  to  the  type  of  data  that  was 
presented  in  the  paper  by  Harris  and  Rosen  concerning  the  distri- 
bution  of  sizes  that  have  been  measured  in  the  stratosphere;  those 
aerosols  look  very  different  than  those  presented  in  the  paper  by 
Ben  Herman,  which  were  tropospheric  aerosols.  Consequently,  the 
regime  that  the SAGE experiment  has  to  work in.is very  different. 

Fraser:  My  question  has  to do with  your  assumption of spherical 
symmetry.  With  respect  to  the  gases,  measurements  by  Lazarus  show 
that  you  can  get a significant  change  in  the  gas  concentration  in 
the  distance  of a few  hundred  kilometers.  Also,  one  of  your  primary 
purposes,  as I understand  it,  in  this  experiment, is to  find  out 
something  about  volcanic  dust  put  into  the  stratosphere. I would 
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think  that  there  would  be  significant  gradients  in  the  volcanic 
dust.  Have  you  examined  how  that  affects  your  data  reduction?. 

Chu: Well,  for  the  ozone  problert-we  have  realized  the  difficulty. 
We  haven't  looked  into  the  details  yet  about  the  horizontal  homo- 
geneity  problem  and  how  they  are  going  to  affect  our  inversion 
results.  What  we  would  probably  end  up  with is sort  of a decrease 
in  our  resolution  if  the  ozone  is  really  fine  structured. As far 
as  the  aerosols  are  concerned,  particularly  volcanic  dust, some.of 
the  lidar  data  taken  over  Langley  recently  has  shown  that  we  had 
considerably  homogeneous  layering  structure  over  quite  an  extended 
region. 

Fraser: I thought a few  days  ago  someone  showed a slide  with  sig- 
nificant  changes  in  one  day? 

Chu: One  day,  yes,  but  over a single  experiment  period  which  is 
of  the  order  of  one  minute or so, we  are  looking  over a . . . 
Fraser: Yes,  but  you  are  looking  over a horizontal  distance  effec- 
tively  of a few  hundred  kilometers, 

Chu: That's  right. A few  hundred  kilometers--we  haven't  really 
seen  any  large  gradients. 

McConnick: That  is  correct.  For  example,  we  performed  lidar 
measurements  from  Kansas  City,  Missouri  during  July  1975. 
Simultaneously,  the NCAR lidar  in  Boulder,  Colorado,  about 600 miles 
away,  obtained  data. A comparison  of  these  data  showed  very  little 
inhomogeneity  in the stratospheric  dust. I think  you  are,  perhaps, 
recalling  some  of  the  earlier  papers  showing  data  taken  soon  after 
the  del  Fuego  volcanic  eruption.  Our  experience,  however,  is  that 
there  is  very  little  change  during a data-taking  period  of a few 
hours.  Even  soon  after  the  eruption,  we  experienced  significant 
changes  in  stratospheric  dust  only  over a period of days,  not 
minutes. I feel  the  assumption  of  horizontal  homogeneity  for  the 
stratospheric  aerosol  is,  therefore, a good  one  under  most  atmos- 
pheric  conditions. 

Shettle: He  showed a graph  of  the  transmissions.  If  anything,  the 
transmissions  were  smaller  than  the  ones  that  were  being  measured 
by  ground  base  measurements  because  you  are  dealing  with  long-slant. 
paths  that  are  showing  transmissions  in a 50  to 80 percent  range. 

Drayson: I've  got a comment  on  this  idea of measuring  the  ozone 
and  then  going  backwards.  It  seems  that  here  you  are  really  trying 
to  have  your  cake  and  eat  it  too.  On  the  one  hand,you  are  assuming 
that  you  know  everything  about  the  atmospheric  aerosols  sufficiently 
well  to  find  the  ozone  profile.  And  then  you  are  turning  around 
and  saying, I can  put  the  ozone  in  and  get  another  parameter  about 
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the  atmospheric  aerosols.  If  you  don't know the  parameters  of  the 
atmospheltic  aerosols  well  enough.in  the  first  place,  you  can't  do 
the  ozone  experiment.  We  have  done  similar  types  of  calculations 
for  the  infrared  region  of  the  spectrum  and  with  lots  of  potential 
sources  of  error.  The  geometry  is  the  same  and  much  of  the  ideas 
are  the  same  in  here,  and  we  find  that  the  accuracy  you  get  is  not 
nearly  as  good  as  the  results  in  today's  paper. 

Herman: I think all'this has  been  looked  at.  There  are  four  wave- 
lengths in this  experiment.  And,  they  can  be  solved  simultaneously 
for  four  pieces  of  information.  You  can  get  the  transmission  at 
two  wavelengths;  you  can  get  the  ozone  amount  and  you  can  get  the 
Rayleigh  scatter  or  any  other  combination.  Anything  beyond  that, 
you  have  to  make  assumptions. 

Drayson: No, I don't  think so. If  you  have  done  that  you  haven't 
got  the  ozone  amount.  You've  got a parameter,  but  it  isn't  the 
ozone  amount,  unless  you  can  prove  definitely  that those,other two 
parameters  completely  describe  the  aerosols  and  the  ozone  amount 
comes  straight  out  of it without  any  further  information  about  the 
aerosols. 

Herman: There  are  four  simultaneous  equations and one  can  solve 
for  four  pieces of information. 

Drayson: If  the  atmosphere  is  described  by  four  pieces  of  infor- 
mation,  then  you've  got  it.  But,  if  it  is  really  described  by 
five  pieces  of  information,  then  you  haven't  got  your  ozone  pro- 
file  but  some  combination  of  aerosol  and  ozone. 

Herman: My  answer  to  your  statement  was  that  you  can  get  four 
pieces  of  data  out  of  this  experiment.  Any  four  pieces  you  want. 
If  you  need  any  more  than  that,  then  you  have to make  assumptions. 

Drayson: The  question  is,  do  you  need  moxe?  Can  you  describe  the 
atmosphere  in  these  four  parameters?  If  not,  what  you  have  pre- 
sented  as  ozone  data  is  not  really  ozone  data,  but  is a combination 
of  that  plus  aerosol  parameters. 

Herman: You  can  get  ozone  data  if  you  make  proper  assumptions-- 
enough  assumptions  to  get  the  aerosol  data  out of it  and  vice- 
versa. 

Drayson: But  are  they  correct  assumptions? 
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INVERSION OF SOLAR  EXTINCTION  DATA  FROM  THE 

APOLLO-SOYUZ  TEST  PROJECT  STRATOSPHERIC 

AEROSOL MEASUmMENT (ASTP/SAM) 

EXPERIMENT 

Theodore J. Pepin 
University of Wyoming 

The ASTP/SAM Experiment was flown t o  demonstrate t h a t  
direct solar  occultation measurements b y  photometers and from 
photographs can be used for  defining  stratospheric  aerosols. 
This paper contains a description  of  the  inversion methods 
t h a t  have been used t o  determine  the  vertical  profile  of the 
ext inct ion  coef f ic ient  due t o  the stratospheric  aerosols 
from  the d a t a  measured during  the ASTP/SAM solar  occultation 
experiment.  Inversion methods include  the  "onion  skin  peel 
technique" and methods of  solving  the Fredholm equation f o r  
the problem subject  to smoothing constraints. The l a t t e r   o f  
these approaches involves a double inversion scheme t h a t  h a s  
been employed . 

Comparisons are made between the  inverted  results  from 
the SAM experiment and near simultaneous measurements made 
b y  l i d a r  and balloon  born  dustsonde. The resul ts  are used t o  
demonstrate the assumptions  required t o  perform the  inver- 
sions  for  aerosols. 

I.  INTRODUCTION 

This  experiment  was  designed.to  demonstrate  the  feasibility 

of remotely  sensing  aerosols  in  the  stratosphere  from a low- 

orbiting  manned  spacecraft.  Increasing  interest  in  the  strato- 

sphere  has  led  to  the  investigation  of  methods  for  remote  sensing 

from  Earth-orbiting  satellites  (Ref. 1). Information  gained  from 

the  Stratospheric  Aerosol  Measurement  Experiment  performed  during 
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the Apollo-Sop2 Test  Project  mission  will  be  used  in  the  design 

of  remote-sensing  equipment  for  future  satellite  missions. 

The  instrument  used  for  making  these  stratospheric  aerosol 

measurements  consisted  of a photometer  and  associated  electronics 

that  provided a signal  to  the  command  module  telemetry  system. A 

Hasselblad  data  camera (HDC) equipped  with  special  infrared (IR) 

film  and  filter  was  used  to  photograph  the  sunset  and  sunrise 

events.  The  experiment  technique  involved  directly  measuring  solar 

intensity  (photometer)  and  Sun  shape  (photographs)  in  the  spectral 

region  centered  at  approximately 0.84 pm.  Immediately  before  the 

satellite  night,  as  the  spacecraft  approached  the  shadow  of  the 

Earth,  the  line  of  sight  to  the  Sun  passed  first  through  the  upper 

layers  of  the  atmosphere  and  then  steadily  down  into  the  lower 

layers  of  the  troposphere.  During  $he  1.5  minutes  (approximately) 

required  for  the  instrument  line  of  sight to pass  through  the  lower 

150 km of  the  atmosphere,  the  solar  intensity  was  recorded  by  the 

photometer,  and  solar  disk  shape  changes  were  photographed.  The 

same  set  of  measurements  was  made  at  satellite  dawn  as  the  space- 

craft  emerged  from  the  shadow  of  the  Earth. 

The  total  extinction  coefficient  was  obtained  from  the  varia- 

tion  of  the  solar  intensity  as a function  of  total  airmass  dis- 

tributed  along  the  line  of  sight.  At  the  effective  wavelength  of 

the  photometer  and  the  photographic  system,  the  extinction  was 

principally  produced  by  the  atmospheric  aerosols;  the  measurements 

are  being  used  to  determine  the  aerosol  concentration. 

To  verify  the  performance  of  the SAM Experiment,  ground-truth 

data  were  acquired  by  dustsonde  (a  balloon-borne  aerosol  optical 

counter)  and a lidar  system  (ground-based  laser  radar).  The  dust- 

sonde  was  flown  from  the  Richards-Gebaur  Air  Force  base  (latitude 

(lat.) 38.8ON, longitude  (long.) 94.7 W) near  Kansas  City,  Missouri, 

at  the same time  and  place of the  ASTP  second  sunset SAM. The 

lidar  measurements  were  also  made  from  Richards-Gebaur  Air  Force 

Base on Earth  nights  bracketing  and  during  the  second  sunset SAM. 

0 
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11.  DESCRIPTION  OF  INSTRUMENTATION 

A.  The SAM Instrument 

The  photometer  (Fig. 1) used  for  the SAM Experiment  utilizes 

a pin  diode  detector  having a 10 field of view,  and  looks  at  the 

9un  through  the cmand module  window  at a wavelength  centered  at 

approximately 0.84 urn. The  detector  was  used  in  the  photovoltaic 

mode  to  detect  the  solar  signal,  and  samples  were  taken  at a rate 

of 10 samples/second  using a 12-bit  analog-to-digital  converter. 

The  signal  output  of  the  converter  was  recorded  and  transmitted by 

the  command  module  data  system. 

0 

Fig. 1. The  photometer  used for making  stratospheric  aerosol 

measurements. 
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B.  Camera  System 

The  photographic  portion  of  the  experiment  consisted  of a 

series  of  timed  IR  photographs  of  spacecraft  sunrises  and  sunsets 

taken  through  the  command  module  window  with a HDC. The  250-mm- 

focal-length  (12.5  by  12.5O  field  of  view  (FOV) ) , f/5 - 6  lens  was 

fitted  with a quality  glass  IR  filter  capable of obtaining  at  least 

three  orders  of  magnitude  blocking  in  the  visible  and  the  ultra- 

violet. Two 50-frame  Kodak  multispectral IR aerial  films  (ESTAR- 

AI1  base)  SO-289  were  used  in  photography. An intervalometer 

automated  the  advance  of  each  frame  every  2.5  seconds  during  the 

experiment . 

0 

C. Balloonborne  "Dustsonde" 

The  University  of  Wyoming  balloonborne  dustsonde  was  used  in 

this  program  for  the  ground-truth in situ aerosol  measurement  that 

was  made  from  the  Richards-Gebaur  Air  Force  Base  (Ref.  2).  Air 

was  sampled  during  balloon  ascent  and  parachute  descent  with a 

2.5  liter  light-scattering  sizing  counter,  into  the  test  volume  of 

which a well-defined  stream  of  air  is  pumped  at  approximately 0.75 

liter/minute.  Individual  particles  scatter  light  into  the  micro- 

scopes.  The  light  pulses  are  amplified  and  by  using  pulse-height 

discrimination,  the  integral  concentration  of  aerosol  particles 

larger  than 0.3 and  0.5  vm  in  diameter  can  be  determined. 

The  background  noise  for  the  system,  mainly  due  to  Rayleigh 

scattering  from  the  air  molecules  in  the  chamber  at  low  altitudes 

and  from  cosmic-ray  scintillation  in  the  photomultiplier  glass  at 

high  altitudes,  was  measured  approximately  every  15  minutes  during 

the  flight  by  passing  filtered  air  through  the  chamber.  The  back- 

ground  was  negligible  above a 10-km altitude;  and  it  was  corrected 

for  below  this  altitude.  The  dustsonde  was  also  equipped  with a 

rawinsonde  temperature  element  for  recording  the  atmospheric 

temperature  profile. 
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D. Lidar 

The  lidar  measurements  for  the SAM experiment  were  provided 

by  the  NASA  Langley  Research  Center  (LaRC)  122-cm  (48-in.)  laser 

radar  system,  which  consists  of  two  temperature-controlled  lasers 

(ruby  and  neodymium-doped  glass)  mounted  on  either  side  of an f/10 

Cassegrainian-configured telescope  composed  of a 122-cm (48 in.) 

diamter,  f/2,  all-metal  primary  and a 25.4-cm (10 in.)  diameter 

secondary  (Ref. 3). The  output  from  the  detector  package  is 

recorded  by a high-speed  data  acquisition  system.  Analog  signals 

are  amplified  and  bandwidth  limited,  digitized  at a 5-  or 10-MHz 

rate  with  8-bit  accuracy,  and  recorded  on  magnetic  tape. A 16-bit- 

word  storage  computer  is  used  to  control  the  data  acquisition 

system  and  to  process  the  data. An X-band  microwave  radar,  coinci- 

dent  with  the  laser  system  axis,'  is  used  to  ensure  safe  operation 

in  the  atmosphere. A rotating  shutter  reduces  laser  fluorescence 

after Q switching. 

111.  RESULTS OF OBSERVATIONS 

A. SAM Photometry 

The SAM Experiment  was  designed  to  observe  four  events  on 

July  22,  1975.  During  Apollo  revolution 95, measurements  were  made 

of a sunset  observation  (00:07:04  Universal  Time  (UT))  off  the  coast 

of  New  Jersey  (lat.  39O10'  N,  long.  72O45' W) and  of a sunrise 

observation  (00:45:52  UT)  over  the  Indian  Ocean  off  the  coast  of 

Australia  (lat.  43 ' S, long.  99O55' E) . During  Apollo  revolution 

96, a sunset  observation  (01:37:52  UT)  was  taken  near  Kansas  City, 

Missouri  (lat.  38O57' N, long.  95O06' W), followed  by a sunrise 

observation  (02 : 14 : 39  UT)  over  the;  Indian  Ocean  (lat.  42O55 ' S, 
long.  77O39' E). The SAM photometer  was  used  to  obtain  radiometric 

measurements  during  each  of  these  four  events,  and  the  measured 

photometric  intensities  have  been  inverted  by  using  the  inversion 

procedures  outlined  below  to  obtain  total  extinction as' a function 



of   a l t i tude.  Figure 2 shows the  sub satellite t racks   for   the   95 th  

and 96th  revolutions and the  locat ions  of  the tangent   points  of 

the 0-km al t i tude  grazing  ray  of   the Sun for   the   four   events .  

B. Photography 

Photographs were made of t h e  f irst  sunrise  and the  second sun- 

set with  the HDC. Figure 3 is a composite  of  frames AST-28-2400 

to  AST-28-2406 taken   dur ing   the   f i r s t   sunr i se .  These  photographs 

have  been pr in ted   wi th   h igh   cont ras t   to  show the  observed  refracted 

images  of t he   so l a r   d i sk  and  have  been  superimposed on a g r id  

showing the  horizon and the   t angent   a l t i tudes .  Figure 4 shows 

frame AST-28-2402, an I‘isodensity  tracing’’  of  this  frame,  and  an 

out l ine   o f   the   theore t ica l  computed shape  of  the Sun as expected 

f o r   t h e   o r b i t a l  and  atmospheric  conditions  present. The d i s t r i -  

bution  of  the  observed  isophotes is due t o  limb darkening,  extinc- 

t i o n  by atmospheric  consti tuents,  and the   e f fec ts   o f   re f rac t ion .  

These photographs  confirm, a t  spacec ra f t   a l t i t ude ,   t ha t   e f f ec t s  

due t o   r e f r a c t i o n  must be considered  in  the  design of so l a r  

Fig. 2. S u b - s a t e l l i t e   t r a c k s  for SAM o b s e r v a t i o n s .  
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see 

F i g .  3.  C o m p o s i t e  of p h o t o g r a p h s   t a k e n   d u r i n g  f i r s t  s u n r i s e  

event (AST-28-2400 t o  2406). 

a b C 

F i g .  4. Sun-shape   compar i son .   (a )   H igh-con t ras t  sun pho to -  

graph (AST-28-2402); (b) I s o d e n s i t y   t r a c i n g ;   a n d  (c) Expec ted  

r e f r a c t e d   s u n   s h a p e .  
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occultation  experiments.  The  photographs  taken  during  the SAM 

events  are  currently  being  analyzed  to  substantiate  theoretical 

models  that  are  under  development  for  use  in  future  occultation 

experiments. 

C. Ground-Truth  Data 

Data  from  the  dustsonde  balloon  flight  launched  on  July  21, 

1975,  at  23:58  UT  are  shown  in  Figs. 5 to 7. Figure 5 contains 

the  measured  temperature  profile,  Fig. 6 illustrates  the  measured 

aerosol  concentration  as a function  of  altitude  for  particles 

larger  than  0.3  pm  in  diameter,  and Fig..7 shows  the  aerosol  count 

ratio  (ratio of particles  greater  than  0.3  pm  in  diameter  to  par- 

ticles  greater  than  0.5  pm  in  diameter)  as a function of altituile. 

TEMPERATURE, '0Ci 

Fig.  5 .  Measured temperature   prof i le   above   Kansas  C i t y ,  

Missouri . 
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AEROSOL  CONCENTRATIONI  No,/ctd 

( > 0.3 prn DIAM. 1 

F i g .  6 .  Measured   dus t sonde   aeroso l   concen t ra t ion  ('0.3 pm 

diameter)   above   Kansas  C i t y ,  Missour i .   Curved  lines i n d i c a t e  

m i x i n g   r a t i o .  

The LaRC l i d a r  system w a s  used  during  the  nights  of Ju ly  22 

and Ju ly  23 t o   o b t a i n  laser backscatter  measurements of t h e   s t r a t o -  

spheric   aerosols .   Figure 8 shows the   backsca t te r   ra t ios   ob ta ined  

during  the  measurements made on Ju ly  23 a t  07:30 U T ,  and Fig. 9 

shows t h e  measured  backscat ter   ra t ios  made on Ju ly  22 a t  04:51 UT. 

(Backsca t t e r   r a t io  is  t h e  ratio of to ta l   observed   backsca t te r  to  

molecular  backscatter.)  
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JULY 21. 1976 
LAUNCH  TIME 2358 GMT. 
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N(>0.3  pm)/N(>0.5  pm) 
Fig .  7 .  R a t i o  of measured   aeroso l   coun t  for p a r t i c l e s  >0.3 pm 

d i a m e t e r  t o  p a r t i c l e s  >0.5 pm d i a m e t e r   a b o v e   K a n s a s   C i t y ,   M i s s o u r i .  

IV. METHODS  .OF l%NERsION 

Two methods  have  been  employed for the  inversion  of  the SAM 

photometric  measurements  in  order  to  obtain  stratospheric  aerosol 

extinction.  Both of the  methods  assume a model of the  stratosphere 

that  contains  horizontal  homogeneity.  The  first  method  has  been 

referred  to as the  onion  skin  peel  inversion  and  allows  for  the 

analytical  inversion  of  the  results.  The  second  method  involves a 

technique  of  double  inversion. 

A. Onion  Skin  Peel  Inversion 

For  this  method of inversion,  the  atmosphere  is  divided  into 

a number  of  homogeneous,  spherical  layers  that  are  considered to 
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F i g .  8 .  Profi le  of  l i d a r  aerosol backscatter 

ratio taken a t  Kansas C i t y ,  Missouri, on J u l y  25, 

1975, a s  07:30 UT (normalized a t  28.53 km). 
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F i g .  9. Profile  of  l i d a r  aerosol back- 

scatter  ratio taken a t  Kansas C i t y ,  Missouri, on 

J u l y  22, 1975, a t  04:51 UT. 
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have  uniform  aerosol  concentrations.  Figure 10 shows a cross 

section  of  the  measurement  geometry  and  illustrates  the  path  lengths 

of  solar  rays  at  different  atmospheric  layers.  Figure 11 shows 

the  inversion  geometry  and  illustrates  the  solar  intensity  contri- 

bution  transmitted  through  the  different  layers  as  seen  from  the 

ASTP  instrument  during a sunset  event. 

As the  bottom  limb  of  the  Sun  becomes  tangent  to  each  of  the 

layers  of  the  onionskin  atmospheric  model,  the  intensity  can  be 

computed  from  limb  darkening  and  refraction  by  summing  the  intensi- 

ties  over  the  layers  above.  For  example,  following  the  notation 

for  the  layers  identified  in  Figs. 10 and 11, one  finds  that  when 

the  lower  limb  is  tangent  to  the  first  and  second  layers,  the 

observed  solar  fluxes  are  given  by 

@ 
F1 = I10 + I11 

F2 = I20 @ + I  + I  i (1) 

21 22 

where,  in  general, F1 and F2 are  the  observed  fluxes  and Il0 and 

I:o are  the  intensities  above  the  upper  layer of the  inversion 

model  (above  the  point  at  which  extinction  is  observed).  The 

intensities Ill, 121, and 122 are  the  transmitted  intensities  to 

be  determined  by  inversion. By using  the  Lambert-Beer law, Eq. (1) 

can  be  written  in  the  form 

8 

. . 
F i g .  10. Cross section of the  onion  skin  atmospheric 

showing the r a y  path  lengths, where P is the  path  length 

j t h  layer for  the  solar r a y  tangent to   the ith layer. 
i j  

model 

i n  the 
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4 

F i g .  11. Inversion geometry showing the  contributions to   t he  

total  transmitted Sun in tens i ty ,  where I is the observed intensi ty  

for the  nth  layer, I , , ,  121, and 122 are  the  transmitted  intensi- 

t i e s   t o  be  determined b y  inversion, and I @ i s  the  portion of the 

unattenuated solar  intensity t h a t  contributes  to I . 

n 

ni  

n 

(3 0 
F2 = I 2 0  + 12, exp(-B,P,,) + exp(-B1P2, - B2P22) 

0 

where I is the   por t ion   o f   the   una t tenuated   so la r   in tens i ty  

th rough   t he   i t h   l aye r   t ha t   con t r ibu te s  t o  the  observed  f lux Fn; 

'ij 
to t h e   i t h   l a y e r ;  and .Bi is t h e  t o t a l  ex t inc t ion  a t  the  wavelength 

of  the SAM system i n   t h e   i t h   l a y e r .   E q u a t i o n  (2) y ie lds  

0 
n i  

is t h e   p a t h   l e n g t h   i n   t h e   j t h   l a y e r  €or the  solar ray  tangent  

B, = -  -1 l n  [" - I10 '1 
p1 1 

-1 I 2  - I 2 0  - I 2 1  exp "PI 1 p2 1 

p22 (3 I 2 2  

I 1  1 

8 

B = - l n  [- - 1 - $1 6 2  
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This  process  can  be  continued  as  the  sunset  event  occurs; 

thus,allowing  for  the  determination  of  the  vertical  profile  of  the 

total  extinction.  Figures 12 and 13  show  the  results  of  the  onion 

skin hversions for  the ASTP sunrise  and  sunset  events. 

B. Technique of Double  Inversion 

Using  the  measurements  of  the  solar  flux  from  the  full  solar 

disk,  during a sunrise  or  sunset  event,  the  vertical  profile  of 

the  aerosol  volume  extinction  coefficient  can  be  determined  by a 

series  of  solutions  of  two  integral  equations.  Each  of  the  inte- 

gral  equations  can  be  transformed  into  integral  equations  of  the 

first  kind  and,  therefore,  lend  themselves  to  solution  by  standard 

inversion  methods. 

The  first  of  these  equations  is 

F i g .  12. Results of onion skin  inversions fo r  B TOTAL 'for 

sunrise  events. 
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Fig. 13. Results of onion  skin  inversions f o r  B for  TOTAL 
sunset  events. 

where  F(t)  is  the  time-resolved  measured  flux, w is  the  detector 

field of view  and x and y are  orthogonal  coordinates  in  the  field 

of view.  The y axis  has  been  taken  tangential  to  the  Earth's 

surface.  The  intensity  distribution  of  the  solar  disk  is  given 

by I (t, x, y),  transmission  through  the  Earth's  atmosphere  by 

T(x),  and  the  angle  between I (t, x, y)  and  the  detectors  normal 

(3 

0 

by 0 . 
Equation (4 )  can  be  reduced  to 

F(t) = P @  I (t,  x)T(X)dx (5) 
X0 

by  integrating I (t, x, y)  over y to  find  the  function I (t, x). 0 0 

Equation (5) is  recognized  as  an  integral  equation of the 

first  kind  and  can  be  written  in  quadrature form as ' 
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where 

Equation (6) can  be  solved  by  the  well-known  constrained 

linear  inversion  technique  developed  by  Phillips  (Ref. 4) and 

Twomey  (Ref. 5) 

The  second  integral  equation  involves  the  volume  extinction 

coefficient B ( Z )  for  the  altitude Z and  can  be  found  by  con- 

sidering  the  transmission  along  the  path P which  is  given  by  Beer's 

law 

T(x) = e -/c B (Z)  dP (9) 

It  involves  the  evaluation  of  the  line  integral  and  can  be  put  in 

the  form  of an integral  equation  of  the  first  kind  as 

Equation (10) can  be  put  in  the  form  of  Eq. (6) by  making  the  sub- 

stitution 

and  can  be  solved  for 8(7)  by  the  same  method  as  the  first  of  the 
equations  of  the  inversion. 

The  linear  inversion  employed  to  obtain  the  sblutions  for  both 

the  transmission  and  the  extinction.coefficient  made  use  of 

smoothing  constraints ( E  being  the  smoothing  matrix).  That  is, 
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the  solution  was  constrained so that  the  second  derivitive  of  the 

function  was  minimized.  In  addition  to  this  constraint,  the 

diagonal  matrix  allowed  for  smoothing  to  be  applied  to  the 

solution  as a function  of  altitude.  The  elements  of  the E matrix 
were  calculated  from  the  measured  fluxes  for  the  first  inversion 

and  from  the  transmissions  for  the  second  inversion.  They  reflect 

the percent  error  in  each  measurement.  The  larger  the  measured 

fluxes  the  smaller  the  corresponding  extinction  coefficients.  The 

elements  of  the &I matrix  apply  smoothing  differentially  with 

altitude. 

Figure 14 shows  the  inversions  for B 
AEROSOL 

obtained  from 

two  sunset  events.  The  molecular  extinction  coefficient B (2) was 

calculated  from  Rayleigh  scattering  theory  for  the  effective  wave- 

length  of  the SAM system.  For  the  Sunset  I1  observation,  the 

balloon  measured  temperature  profile  was  used  to  determine B ( Z ) .  m 

m 

10-5 10-4 10-3 

p ' A E R O S O L .  
10-2 

F i g .  1 4 .  R e s u l t s  of double   invers ion for BAERosoL f o r  sun- 

set events. 
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For the  sunset I observation, a standard  atmosphere  was  used. 

'Aerosol 
bution  from  the  inverted  results. 

was  then  determined  by  subtracting  the  molecular  contri- 

V. COMPARISON OF  RESULTS 

The  balloon  dustsonde  measurements of number  density  of  par- 

ticles  greater  than  0.3  pm  diameter and' the  aerosol  count  ratio 

have  been  used  as a function  of  altitude  to  fit  various  size  dis- 

tributions.  These  size  distributions  have  been  used  to  predict 

the SAM photometer  measurements of the  aerosol  extinction  observed 

during  the  second  sunset  event  and  the  lidar  observations of the 

backscatter  ratio.  Figure  15  shows a comparison  between a plot  of 

the SAM inversion  results  obtained  for  the  second  sunset  event 

ustng  the  onion  skin  peel  inversion  method  and  the  Mie-scattering 

computations  performed  using  the  log-normal  aerosol  size  distri- 

bution  developed  by  Pinnick  et  al.  (Ref. 6). Figure  16  compares 

the  results of the  double  inversion  technique  with  the  Mie- 

scattering  computations.  This  distribution  was  adjusted  as a 

function of altitude so that  the  total  number  and  mode  radius  fit 

the  dustsonde  observations.  For  these  calculations,  the  index  of 

refraction  for  the  stratospheric  aerosol  was  taken  to  be  1.43 - 
i(o'.O),  1.50 - i(O.O),  and 1.60 - i(O.0)  (where i = -1. 

Figure 17 shows  the  comparison  between  the  lidar  backscatter 

ratios  observed on the  night  of  July 22 and  the  computed  back- 

scatter  ratios  for  index  of  refraction  1.43 - i(O.O),  1.50 - i(O.O), 
and 1.60 - i(O.0).  These  backscatter  ratios  were  computed by using 
the  same  size  distribution  fits  to  the  dustsonde  observations 

that  were  used  for  the  previously  mentioned SAM extinction  dust- 

sonde  comparisons.  The  large  enhancement  at  approximately  13 km 

in  the  lidar  data  is  due  to  cirrus  clouds. 

1 
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F i g .  15. Comparison of SAM results from  onion'skin  inversion 

on July 22, 1975 (second  sunset  event) , and  Mie computations o f  

dustsonde resul ts  on J u l y  22,   1975,  for different  optical proper- 

t ies  of   the  aerosols (BAERoSoL = aerosol  extinction). 

Results of the  three  different  techniques  agree  in  the  place- 

ment  of  the  peak  altitude  of  aerosol  concentration,  and  they  are 

consistent  with  a  single  size  distribution  and  particle  refractive 

index.  The  author  would  like  to  point  out  that  the  log-normal 

distribution  used  to  fit  these  observations  is  not  necessarily 

unique.  Other  distributions  might  fit  as  well. 
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F i g .  1 6 .  Comparison o f  SAM r e s u l t s   f r o m   d o u b l e  inversion on 

J u l y  22, 1975 (second s u n s e t  event),  and Mie c o m p u t a t i o n s  o f  d u s t -  

sonde r e s u l t s  on J u l y  22, 1 9 7 5 ,  f o r  di f ferent  o p t i c a l   p r o p e r t i e s  

o f  the a e r o s o l s  (B,,osoL = a e r o s o l  extinction) . 
c 
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F i g .  17.  Comparison o f  l i d a r   r e s u l t s  of J u l y  22, 1975 ,  and 

Mie c o m p u t a t i o n s  of d u s t s o n d e   r e s u l t s  on J u l y  22 ,  1975,  f o r  d i f -  

ferent o p t i c a l   p r o p e r t i e s  o f  the a e r o s o l s .  
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DISCUSSIONS 

Shettle: On  your  deviation  at  the  upper  altitudes,  one  possibility 
I  think  there  could  be  some  additional  large  particles.  Some of 
the  curves  that  Frariklin  Harris  showed  indicated  size  distributions 
that  are  suggestive  of  a  kink  with  a  somewhat  less  deep  slope.  You 
are  measuring  particles .15 and .25 pm there  and  when  you  get  out to 
onemicrometer,  the  number  densities  are  sufficiently  low  that  they 
don't  show  up  at  all  in  your  data. 

Pep in :  As  you  will  notice,'  the  size  ratio  is  getting  larger  at 
high  altitudes.  The  size  ratio  is  the  number  of  small  particles 
to  the  number  of  large  particles.  And,  consequently,  the  balloon 
data  indicates  that  the  distribution  is  getting  steeper  rather 
than  flatter  at  the  high  altitudes. 

Shettle: Yes.  I am suggesting  a  second  component  which  mainly 
contributes  out  in  one  micrometer  region: 

Pep in :  That  would  be  very  interesting  if  there  is  a  second  size 
distribution  at  high  altitudes. 

Shettle: It  is  suggestive  of  meteoric  dust  coming  down.  I  know 
I  talked  about  it  earlier  this  week.  Another  possibility  that  the 
size  of  the  solar  disk  is  getting  larger  that  you  see.  What  about 
possible  uncertainty  in  the  intensity  across  the  solar  disk? 

Pep in :  The  brightness  theorem  has  to  be  satisfied  and  the  refrac- 
tion  effects  are  getting  very  small  at  those  altitudes. 
Consequently,  the  errors  that  one  would  make  in  making  an  estimate 
are  going  to  zero  very  quickly  at  those  altitudes.  It  is  low  in 
the  atmosphere  where  the  refractive  effects  are  large. \ 

Park:  How  much  do  your  inversion  results  depend  on  the  pressure 
profile  you  adopt  in  the  retrieval? 

Pep in :  It  is  independent  of  pressure.  All I have  to do is to 
know  roughly  where  the  ray  goes  through  the  atmosphere. 

- 

Park:  But  you  have  to  know  the  pressure  profile. 

Pep in :  To  first  order,  then  I  can  determine  the  entire  atmosphere 
independent  of  the  geometrical  properties  of  the  atmosphere, 
because  the  spacecraft  scans  with  a  uniform.rate  across  the  atmos- 
phere.  It is only  the  second  order  coupling  with  the  refracting 
geometry  that  produces  the  errors  in  the  experimerit. 

' .  

. ~ .~. -~ 

'See Fig. 7 in  this  paper. 



Fraser: In your  firstfigure, I think  you  showed  the  refraction 
effects  of  the  sunlight.  It  looked  to  me  as  though  when  the  sun 
got  closer  to  the  horizon,  the  horizontal  dimensions  decreased 
significantly.  Why  was  that? 

Pepin: (Showing  graph ).  I think  maybe  that  was  an  optical 
illusion,  because  you  can  very  carefully  compare  the  horizontal 
distances  across  each  of  these  images. 

2 

Fraser: Are  they  the  same? 

Pepin:  Yes,  they  are  the  same. 

Green: Aren't  stratospheric  aerosols  predominantly  smaller  than 
tropospheric  aerosols? 

Pepin:  Yes, I think  they  are  very  often.  The  peak  seems  to  be 
at  small  sizes  for  stratospheric  aerosols.  Whereas  Ben  showed 
with  his  inversions  very  often  there  is a second  peak  for  the 
tropospheric  aerosols--move  out  to  something  of  the  order  of  half 
to  one  micron  in  size. 

Green: So might  you  not  be  in a regime  where  the  smaller  particles 
would  best  be  described  by  l/X4 , like  Rayleigh  particles, so that 
perhaps a better  parameterization  would  be  something  which  inter- 
polates 1 / ~  to 1/h4? 

T w i t t y :  I think  we  have  seen a lot  of  evidence  in  the  last  hour 
that  indicates  that  the  stratospheric  aerosols  variation  of  its 
scattering  coefficient  with  eavelength  is  more  like 1/A , not  l/A4. 

Green: If  you  have  lots  of  small  particles,you  would  be  analogous 
to  the  situation  which  Ben  was  indicating.  Perhaps a better  two- 
parameter  description  would  be--not a single  power  law--but  one 
that  interpolates  between  two  powers.  You  could  perhaps  still 
find a two-parameter  description  that  would  do  that,  but. . . 
T w i t t y :  Well,  you  could  parameterize  it  that  way.  The  argument 
earlier  was  that  you  cannot  possibly  get  any  information  about  the 
two  parameters.  out.  The  question of what  you  are  putting  into 
your  model  that  you  think  is  the  closest  representation  is  open  to 
your own decision. I think  you  talked  about  nonpower  laws  in 
your  simulated  analysis;  you  are  using  log  normal  laws. 

~ - 

2See Fig. 3 in  this  paper. 
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Pepin: Y e s ,  i n  fact, I th ink  you can   jus t   look  a t  t h i s  measurement 
t h a t  was t a k e n   i n  Kansas  City. It is typical of aerosols i n   t h e  
s t ra tosphere .  You w i l l  n o t i c e ,   i n   t h e   s t r a t o s p h e r e ,   t h a t  between 
t h e  0.3 and 0.5-pm d iame te r   s i ze   pa r t i c l e s , t he re  is  a f a c t o r  of 
l i k e  4 or 5 i n  terms of t h e  number of particles l a rge r   t hah   t ha t  
s i ze .  If you go t o  0.01, t h e  number is  ten.  So what t h i s  is 
saying is t h a t   t h e   d i s t r i b u t i o n   h a s  peaked  around t h e  0.1 t o  0.2 
micrometer  region. 
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EFFECTIVE AEROSOL OPTICAL PARAMETERS FROM 

POLARIMETER MEASUREMENTS 

Jacob G .  Kuriyan 
U n i v e r s i t y  o f  C a l i f o r n i a  

. In this p a p e r ,  the t h e o r y   u n d e r l y i n g  the i n t e r p r e t a t i o n  
o f  p o l a r i m e t e r   m e a s u r e m e n t s  i s  described. The a s s u m p t i o n s  o f  
the model a r e   c a r e f u l l y   s t a t e d  so t h a t  the r e s u l t s   o b t a i n e d  
f r o m  the ground-based  experiment   can be u n d e r s t o o d   w i t h o u t  
a m b i g u i t y .  The m e t e o r o l o g i c a l   s i g n i f i c a n c e  o f  the p a r a m e t e r s  
i s  also deduced i n  the p a p e r .  W i t h  a s a t e l l i t e - b o r n e   p o l a r i -  
m e t e r   t h a t  monitors the u p w e l l i n g   r a d i a t i o n  f ie ld , the e f f ec t  
o f  the ground  must be taken into a c c o u n t  i n  order t o  o b t a i n  
the a e r o s o l   p a r a m e t e r s .  Two m e t h o d s   t h a t  hold p r o m i s e   a r e  
described. 

I.  INTRODUCTION 

A great  deal  of  attention  has  centered  on  the  impact  of  arti- 

ficial  and  natural  pollutants  on  man.  Of  particular  interest  to 

meteorologists  is  their  effect  on  the  heat  budget  of  the  atmosphere 

so as  to  estimate  the  modifications  they  induce  on  weather  and 

climate.  This  paper  shall  address  itself  to  the  determination of 

the  optical  properties  of  atmospheric  particulates  that  are  of 

significance  to  meteorologists. 

The  atmosphere  is  often  likened  to  an  engine  driven  by  the 

solar  energy  that  is  absorbed  by  the  Earth-atmosphere  system. In 

numerical  studies of the  circulation of the  atmosphere,  the  heat 

budget  of  the  atmosphere  is a significant  input  to  the  problem. 

As the  general  circulation  models  have  become  more  sophisticated, 

it  has  become  necessary  to  take  into  account  the  radiative  effects 
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of  aerosols,  xhich  can  be  viewed as a p e r t u r b a t i v e   c o r r e c t i o n   t o  

the   o the r  terms Fr? the  heat  budget.  

The a e r o s o l   e f f e c t s   a r e   b u t  a minor ( y e t   s i g n i f i c a n t ,   i n  some 

cases) co r rec t ion   t o   t he   t o t a l   hea t   budge t   ca l cu la t ion ,  and so, 

unless   the  scheme t h a t  i s  devised   to   incorpora te   these   e f fec ts  is  

simple,   meteorologists w i l l  f i nd  it easy   to   cont inue   to   ignore  

the i r   e f fec ts .   Theore t ica l   t echniques  are ava i l ab le   fo r   ca l cu -  

l a t ion   o f   r ad ia t ive   p rope r t i e s   o f   ae roso l s   o f   pa tho log ica l   shapes  

and d i s t r i b u t i o n s ,   b u t  w e  must resist the  temptation  of  using  these 

models  unless  irrefutable  evidence is presented   tha t   s impler  m o d e l s  

a r e   i n s u f f i c i e n t .  The needs of t he   u se r   ( i n   t he   p re sen t   o r   fo re -  

seeable f u t u r e )   d i c t a t e s   t h a t  simple models  be  used  and  then 

empirical   formulae  ( involving  the  aerosol model parameters)   for   the 

r ad ia t ive   e f f ec t s   be   de r ived  so as t o  be  used i n   t h e   c i r c u l a t i o n  

models. We may compare t h i s   t o  a method sometimes employed i n  

French  cuisine: a piece of  pheasant meat is  cooked  between two 

slices of  veal,  which are   then  discarded (Ref. 1). The experi-  

mental   determination  of  the model parameters w i l l  then assist i n  

the  heat   budget   calculat ion.  

Most of t h e   r a d i a t i v e   t r a n s f e r  programs  model aerosols  as a 

co l l ec t ion  of spher ica l ,  (Mie) s c a t t e r e r s ,   w i t h  a uniform  refrac- 

t i ve   i ndex   and   t he i r   s i ze   d i s t r ibu t ion   desc r ibed  by a f u n c t i o n   n ( r ) .  

The parameters of t h e  model a re   then   the   re f rac t ive   index  m ( i n  

general  complex)  and  parameters Zn the   s i ze   d i s t r ibu t ion   func t ion .  

In   r ea l i t y ,   a tmosphe r i c   ae roso l   pa r t i c l e s  are not  a l l  spher ica l  

nor do they  have a uniform  refractive  index. It i s  often  argued 

t h a t   a e r o s o l   p a r t i c l e s ,  no matter what the i r   shdpe; ' acqui re  a water 

coat ing and become spherical .   This  heurist ic  argument,   reasonable 

though it may be,  should  not be confused as a subs t i t u t e   fo r   p roo f  

of our  hypothesis.   Rigorously  speaking,  the  intent  of  the  approach 

adopted  here is  to  descr ibe   the   e f fec ts   o f   a tmospher ic   aerosols   in  

terms of a simple model. There is no p r io r   a s su rance   t ha t  it is 

possible to   i nco rpora t e  a l l  the  observed  aerosol  effects i n  such 



a simple model. Thus, ini t ia l ly ,   the   experiments  must  be  used t o  

j u s t i f y   t h e  model. That is  t o  say,  not  only must the  model 

parameters  be  determined,  but the experimental  proof of t he   s e l f -  

consistency  of  the method must  be  displayed.  If   the  results of 

the  simple model cannot  account  for  the measurements then,  and 

only  then, i s  the consideration  of more complicated  aerosol  models 

j u s t i f i ed .  

To d ig res s   fo r  a moment, i n   t h e   l i t e r a t u r e ,   t h e   l a b o r a t o r y  

measurements  of s ca t t e r ing   o f f   i r r egu la r   pa r t i c l e s   f l oa t ing   i n  a 

nitrogen j e t  are compared with  the  scat ter ing  pat terns   of   spherical  

p a r t i c l e s .  The lack  of  agreement is  then  used  as a j u s t i f i c a t i o n  

for considering  horrendously  complicated  aerosol models t h a t  can 

only be handled by s t a t i s t i c a l  methods. But it w i l l  be found that 

the ground-based  measurements  of the   sca t te red   rad ia t ion  f ie ld  i n  

the atmosphere ( t h a t  have been obtained a t  UCLA f o r  the l a s t  two 

years)  can,  indeed, be explained  in  terms of the simple model des- 

cribed.  Perhaps it is sa fe   t o   conc lude   t ha t   i r r egu la r   pa r t i c l e s  

f l o a t i n g   i n  a nitrogen j e t  do not  simulate the behavior  of  the 

atmosphere. 

The experiments  conducted by the late Professor 2. Sekera a t  

UCLA es tab l i shed   tha t  the presence  of   par t iculates   in   the atmos- 

phe re   a l t e r s   t he   po la r i za t ion   cha rac t e r i s t i c   o f   sky l igh t .  How the  

polar iza t ion  measurements  can be used to   i n fe r   t he   ae roso l  model 

parameters,  and  the  self-consistency  checks  that  have  been  devised 

to ve r i fy  the va l id i ty   o f  the assumptions  of  the  aerosol model a r e  

described. 

The method of  approach is  to construct   the   radiat ion f ie ld  f o r  

a l l  possible  values  of  the aerosol parameters. Admittedly, t h i s  

is pr imi t ive ,   and   the   v iab i l i ty   o f  the method hinges  crucially  on 

the table being  complete  and  on the development  of  an  efficient 

algorithm  that  can  help match  measurements  and calculat ions.  

Redundancy i n   t h e  model can  increase  the  size  of  the tables and 

f rus t r a t e   t he   s ea rch   fo r  a f i t .  
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11. CONSTRUCTION OF THE TABLES AND CHOICE OF A SIZE DISTRIBUTION 

The  compilation  of a complete  table of radiation  field  in a 

turbid  atmosphere  necessarily  involves  the  identification  of a 

model  that is of  sufficient  generality  that it can  accommodate  the 

commonly  occurring  radiation  field  patterns.  Consistent  with  our 

philosophy  of  selecting  the  simplest  such  model,  we  considered  the 

power  law  distribution  due  to  Junge,  n(r) = a/r +- ', a deceptively 
simple  functional  representation.  It  is  often  assumed  that  there 

are  only  two  parameters  in  this  representation, a (proportional  to 

the  concentration)  and v (that  determines  the  distribution  in 

sizes).  Actually,  however,  the  integrals  involving  n(r)  require 

a cut-off  at r and/or r and  the  results  can  be  sensitive  to 

the  value  of  the  cut-off  point,  i.e.,  the  cut-off  point  becomes a 

parameter  in  the  model.  This  deficiency  of  the  power  law  distri- 

bution  is  not  well  recognized  in  the  literature  and so it  would  be 

wdrth  while  to  illustrate  this  with  an  example.  The  optical  depth 

T in  our  model is given  by T = IT i r2n  (r)  Qext  (x)  dr,  where Q 

is  the  van  de  Hulst  extinction  efficiency  factor.  Let  us  examine. 

the  integral  at  the  lower  limit  of'  integration.  For  small  values 

of r, when m is complex, from  van  de  Hulst's  book  we  find  that 

Qext (x) iJ x, where x = kr.  Thus,  the  integrand  in  the  expression 

for T behaves  like  l/r When v > 3 ,  a condition  that  occurs 

quite  often,  the  lower  limit  of  the  integral  will  behave  worse 

than &n rmin. Thus,  when v > 3 ,  r can  become a significant 

parameter  in  the  calculation  of T. This  is  an  undesirable  and 

unphysical  restriction  on  this  model. 

min  max' 

ext 

v - 2  

min 

The  modified  gamma  di'stribution  used  by  Deirmendjian  is  well 

behaved  at  both  limits  of r and  his  analysis  of  commonly  occurring 

aerosols  led  him  to  classify  them  into  three  types--haze 

H(aHr2exp(-bHr)) , haze  L(aLr2exp(-bL&))  andhaze  M(aMr  exp(-b M 6) ) , 
with aHI aLI aMr bHI bL'  and b being  assigned f iked  values.  If 

we  accept  this  classification  of  Deirmendjian,  then  the  most  gen- 

eral  aerosol  distribution  would  be  an  admixture  of  these  three 

M 
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types  and .we  would. be  led  to a tri-modal  distribution  with  the 

modes  determined  by  the  values  of  the  various  b's.  The  admixture 

ratio  would  have  to  be  height  dependent  and,  thus,  the  problem  will 

be  complicated  even  further.  This  goes  against  the  grain  of  our 

philosophy,  which is to  start  with  the  simplest  possible  model  at 

the  outset,  and  introduce  complications  only  when  the  simpler  models 

are  found  to  be  deficient  in  accounting  for  the  measurements. 

Using  analytical  a.pproxhations,  we  investigated  (Ref. 2) the 

redundancy  of  the  description of aerosols  and  we  found  that  the 

gamma  (or  the  haze H type) distribution  n(r) = a  r2 exp(-b  r) , with 
a and b considered  as  arbitrary  parameters  could  simulate  the 

results  due  to  haze M or  haze L. This  feature  was  found.to  persist 

even  when  the  exact  (Mie)  theory  was  used.  That  is  to  say,  the 

haze H type distribution  could  produce  the  same  phase  matrix  ele- 

ment  as  the  three  haze  distributions  used  by  Deirmendjian,  Thus, 

for a start,  we  are  led  to  use  the  haze H type distribution,  with 

two  parameters, a (proportional  to  concentration)  and b (inversely 

related  to  the  modal  radius),  and  our  table  entries  would  corre- 

spond  to  various  values  of  these  and  other  parameters  (such  as 

refractive  index,  wavelength,  ground  albedo,  etc.).  We  are  at 

liberty  to  expand  the  table  by  the  inclusion  of  other  independent 

models,  if  experiments  warrant  it. 

It  is  important  to  appreciate  the  implications  of  the  redun- 

dancy  that  is  described  in  the  preceding  paragraph.  Many  different 

size  distributions  give  rise  to  the  same  phase  matrix  element  and, 

hence,  the same, radiation'field.  Thus,  from a measurement  of  the 

radiation  field,  we  will  not  be  led  to a unique  size  distribution 

but  to a class  of  distributions,  all  equivalent  to  one  another  in 

that  they  correspond  to  the  same  radiation  field  (and,  hence, 

fluxes).  This  observation  is  perfectly  in  consonance  with  our 

attempt  to  model  the  actual  atmospheric  aerosols  in  terms  of  an 

idealized  collection  of  spherical  scatterers,  and  what  we  are 

observing  is  that  there  is  still  another  degeneracy  allowed  in 
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these  models,  in  that  even  the  spherical  scatterers  can  have  dif- 

ferent  size  distributions  and  yet  yield  the  same  phase  matrix  ele- 

ment.  Needless  to  say,  we  will  expect  that  the  data  can  be  fitted 

by  other  distributions,  such  as  log-normal or multimodal,  but  in 

all  cases  the  fluxes  derived  must  be  the  same.  (This  statement  on 

fluxes  has  been  proved  only  for  the  Deirmendjian  distributions. 

It  is  anticipated  that  the  result  will  hold  for  other  distributions 

as  well. ) 

Let us then  enumerate  the  assumptions  inherent  in  the  equiva- 

lent  aerosol  model  and  in  the  calculation  of  the  tables  of  radia- 

tion  field. 

1. Aerosols  are  spherical  scatterers  and so Mie  theory  can  be 

used. 

2. Aerosols  have a uniform  refractive  index. 

3 .  Size  distribution  of  aerosols  is  given  by  n(r) = ar2exp(-br), 

where  the  concentration  (related  to  a)  varies  with  height. L 

4. The  atmosphere  is  assumed  plane  parallel  and so there  is a 

horizontal  homogeneity  of  aerosols. 

5. Multiple  scattering  code  (that  due  to J.V. Dave,  developed 
for NASA) is  used. to calculate  the  radiation  field. 

6. The  ground  reflection  is  assumed  to  be  Lambertian,  an 

assumption  that  is  not  serious  in  the  study  of  the  downwelling 

radiation  but  quite  unacceptable  for  the  upwelling  radiation 

studies  (as  in a satellite  borne  _experiment).  We  will  comment  on 

this  later  in  the  paper. 

The  multiple  scatteri’ng  calculations  are  performed  iteratively. 

When  the  size  of  the  angular  integration  is  smal.l,-the  error 

decreases  but  the  cost  of  computation  increases.  Thus,  there  is 

an  optimal  angular  integration  step  that  is  used  in  the  calculation 

of  the  entries  of  the  table  and,  corresponding  to  this,  there  is 

an  error  in  the  calculated  radiation  field.  Any  fit  with  experi- 

ment  need  be  only  consistent  within  these  error  bounds. 
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So as  to  develop  the  algorithm,  we  studied  the  sensitivity  of 

the  radiation  field  to  the  variation  of  the  aerosol  model  param- 

eters  (Refs. 3, 4 ) .  For  our  analysis,  we  considered a conical 

scan of the  sky,  with a fixed  zenith  angle of observation  and 

variation  of  the  azimuth  angle  @(with  respect  to  the  Sun  plane) 

as  in  Fig. 1. We  did  not  include  the  almucantar  sweep  since  our 

polarimeter  was  not  designed  to  view  the  direct  beam  of  the  Sun. 

In  this  type of a scan  the  intensity  curve (I vs. @) exhibits a 

bell-shaped  structure,  and  it  was  found  that  the  half-width  of 

the  intensity  curve  was.  determined  mainly  by  b.  .[This  is a phys- 

ically  reasonable  condition  since  the  width  of  the  intensity  curve 

is  the  forward  peak  of  scattering  and  that  is  sensitive  to  the  size 

of  the  particles; b is a parameter  that  describes  (the  inverse  of) 

the  average  (modal)  radius  of  the  distribution.]  Thus,  our 

algorithm  consists  of  choosing a reasonable  value  (but  fixed  for a 

location)  for  the  ground  albedo,  then  determining b by  examining 

the  width  of  the  curve  of I against 4,  and  then  determining T and 
m by  examining  the  curve  of P against 4 ,  and  the  tail  of  the  curve 
of I against @. This  is  actually a graphical  algorithm  more  diffi- 
cult  to  explain  than  to  use.  Numerical  simulations  were  used  to 

check  the  algorithm  that  are  more  difficult  to  explain  than  to  use. 

Numerical  simulations  were  used  to  check  the  algorithm.  These  were 

found  satisfactory  and,  thus,  we  were  ready  to  examine  the  field 

of  measurements. 

111. THE FIELD  MEASUREMENT PROGRAM AT UCLA 

A ground-based  polarimeter  was  used  to  measure  the  intensity 

and  polarization  of  skylight.  The  scan  of  the  sky  was  the  conical 

scan  described  in  Fig. 1. The  measurements  were  made  at 2 wave- 

lengths  and  at  several  (conical  scans)  zenith  angles  of  obser- 

vation.  From a measurement of the I and P in one conical  scan  (at 

various  azimuth  angles),  we  infer  the  aerosol  parameters  using  the 

algorithm  that  was  developed.  These  inferred  aerosol  parameters 

can  be  inserted in the  radiative  transfer  code  and  the  radiation 



SUN 

F i g .  1. The c o n i c a l   s c a n  mode of the ground-based  .polarimeter  

( P ) .  T h e  a z i m u t h  9 i s  defined w i t h   r e s p e c t  t o  the S u n   v e r t i c a l  

p l a n e   ( h a t c h e d ) .  0 and 0 a r e  the o b s e r v a t i o n  and solar zenith 

a n g l e s ,   r e s p e c t i  vel y . 0 

field (I and P) can  be  calculated  at  the  other  wavelength  and  the 

other  zenith  angles of observation.  If  these  calculations  compare 

favorably  with  the  measurements  at  the  other  wavelength  and  other 

zenith  angles  of  observation,  then  we  have a consistency  check  on 

the  assumption  of  the  model.  If  they  do  not  match,  then  we  will 

have  to  analyze  the  assumptions  in  the  model  and  see  if  any of the 

assumptions  have  to be relaxed  to  fit  the  data.  For  instance,  if 

there  are  horizontal  inhomogeneities,  as  when  one  air  mass  is 

replacing  the  other,  we  would  find  some  disparity  in  the  multi- 

angular  scans. 

L 

These  measurements  were  carried  out at,various locations so as 

to  determine  if  the  experimentally  inferred  effective  parameters 

had  any  meteorological  significance  (Ref. 5). For  instance,  if 
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the  .aerosols  near  the  coastal  area  are  monitored,there  would  be a 

preponderance  of  marine  aerosol  particles, arid the  refractive  index 

would  be  close  to  that  of  water. So also  the  desert  aerosol  must 

yield  indices  of  refraction  closer  to  that  of  silicates  (near 1.55). 

Santa  Ana  conditions  (dry  dusty  winds)  that  bring  clear  days  at 

Los Angeles  should  have  particles  of  small  size  and so on. 

A large  number  of  measurements  were  made  over  these  chosen 

sites  at  various  times  of  the  year  with  the  idea  of  arriving  at 

average  values  of  these  effective  parameters  for  various  geo- 

graphical  and  meteorological  situations. 

IV.  RESULTS  OF  THE  GROUND-BASED  MEASUREMENT PROGRAM 

Measurements,  indeed,  validated  the  assumptions  of  the  model. 

Figures 2 and 3 were  made  at  two  different  wavelengths,  one  after 

the  other,  and  we  find  that  the  parameters,  indeed,  are  the  same. 

Note  that  the  optical  depth  at X =0.575 pm  is  greater  than  that  at 
X =0.7 vm,  as  it  ought  to  be.  Figures 3 and 4 show  the  multiple 
zenith  angle  correlation.  Again,  the  parameters  derived  are  the 

same.  We  have  found  this  type  of a correlation  in  numerous  measure- 

ments.  Further,  we  find  that  the  effective  parameters  do  have a 

meteorological  significance,  the  refractive  index  approaching  1.34 

when  there  is  marine-type  aerosols  and  approaching  1.54  when  the 

dry  desert  aerosols  are  present.  The  extensive  measurements  that 

we  have  carried  out  also  confirms  the  fact  that  it  is  possible  to 

characterize  aerosols  occurring  during  certain  meteorological  con- 

ditions  with  particular  average  values.  This  is  summarized  in  the 

table.  It  is  now  possible  to  assign  representative  values  for 

these  aerosol  parameters  based  on  the  geographical  location  and 

use  these  in  the  heat  budget  calculations.  We  are,  of  course, 

extending the local  measurements  made  in Los Angeles  basin  on a 

global  basis, a procedure  that  is  reasonable  only  because  the Los 

Angeles  basin  includes  within it representative  regions  of  the 

coastal,  urban  and  desert  air  masses. 
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F i g .  2.  May 2 2 ,  1976 a t  UCLA. S o l a r  zenith a n g l e  = 40 , 
o b s e r v a t i o n  zenith a n g l e  = 60 , w a v e l e n g t h  (A) = 0.7 1.1. Inferred 

aeroso l   parame ter s   (a s suming   g round   a lbedo  (A) = 0.2) a r e :  m = 1.5,  

b = 2 0 ,  T = 0.15. 

0 

0 

The  parameters  that  are  determined  have  the  following  error 

bounds: 6b = 2, 6-r = 0.02, 6m = 0.02.. It  is  possible  to  sharpen 

these  error  bounds  by  having  a  more  detailed  catalog  of  tables. 

But  it  is  not  clear  that  this  is  needed  for  the  use  that  we  envision 

for  the  inferred  parameters.  In  some  cases,  we  have  found  that  by 

choosing  a  Haze M representation  we  will  be  able'to-obtain  better 

agreement  with  the  experimental  measurements,  i.e.,  the  parameters 

can  be  determined  with  better  accuracy. . In  all  cases,  however,  we 
were  able  to  fit  the  data  within  the  limits of the  Brrors  given  pre- 

viously.  This, of.course, means  that  if we can live with  that-amount 
of error  in  the  parameters,  then  our  model is quite  satisfactory. 
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F i g .  3.  May 2 2 ,  1976 a t  UCLA. S o l a r  zenith a n g l e  = 40°, 

o b s e r v a t i o n   z e n i t h   a n g l e  = 50 , w a v e l e n g t h  ( X )  = 0.575 u .  I n f e r r e d  

aerosol parame ter s   (a s suming   g round   a lbedo  (A) = 0.2)  a r e :  m = 1.5 , 
b = 18, T = 0.20. 

0 

V. STUDY OF UPWELLING  RADIATION--SATELLITE BORNE POLARIMETER 

The  radiative  transfer  equation  is  an  integral  equation. 

Therefore,  in  order  to  determine  the  radiation  field  in  any  one 

direction,  it  is  necessary  to  know  it  in  every  other  direction. 

Thus,  the  check  of  the  assumptions  involved in the  model  has 

ensured  us  the  validity of the  calculations of the  upwelling 

radiation  field.  However,  the  experimental  check of this  is  com- 

plicated  by  the  presence  of  ground  reflection. The model  that  we 

use  for  the  ground,  as a Larnbertian  source,  while  satisfactory  for 

the  study  of  the  downwelling  radiation  (since  the  ground  signal  is 

only  an  insignificant  part  of  the  downwelling  radiation),  is 
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F i g .  4 .  May 22, 1976 a t  UCLA. S o l a r  zenith a n g l e  = 40 , 0 

o b s e r v a t i o n  zenith a n g l e  = 60 , wave leng th  (A) = 0.575 p. Inferred 

aerosol   parameters   (assuming   ground  a lbedo  (A) = 0 -2) a r e :  m = 1 . S I  

b = 20, T = 0.15. . 

0 

totally  unsatisfactory  for  the  study  of  upwelling  radiation.  In 

fact,  in  the  long  wavelength  region  (near 0.7 pm),  the  signal  from 

the  ground  completely  dominates  the  aerosol  and  the  molecular  part 

and  can  be  used  as a monitor  of  the  ground  reflection  property. 

This  can  be  introduced  in  the  short  wavelength  radiative  transfer 

calculation  as  the  groupd  source.  The  preliminary  calculations  we 

have  done  seem  to  justify  this  approach.  We  will,  however,  con- 

sider  the  simpler  case  of  the  radiation  field  over  the  ocean,  off 

from  the  specular  region,  where  it  is  not  unreasonable to expect a 

case  of  zero  ground  reflection.  In  actuality,  however,  the  specu- 

lar  component  due  to  the  water  must  also  be  modeled and included 

with  some  gross  features  of  sea-surface  roughness. 
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As a preliminary  effort  we  have  ignored  these  effects  and 

assumed  that  the  sea  surface  is a near-zero  reflection  surface  and 

analyzed  the  upwelling  radiation  in  order  to  determine  the  algo- 

rithm  for  inference  of  the  aerosol  parameters.  The  analysis  is 

made  more  difficult  here  by  the  fact  that  the  observation  geometry 

must  also  be  consistent  with  the  satellite  path.  We  have  con- 

sidered  the  mode of observation  where  the  target Is situated  on 

the  earth  in  the  satellite's  path,  and  the  polarimeter  will  lock 

itself  onto  the  target,  viewing  it  (in  the  satellites  orbit  plane) 

as  the  satellite  continues  in  its  orbit.  The  observation  angles 

will  be  restricted  such  that  the  specular  component  of  the  reflec- 

ted  light  is  not  encountered  by  the  instrument.  The  rules  thaf 

have  been  developed  for  the  algorithmarequite  different,  but  we 

do  find a marked  difference  in  the  intensity  and  the  polarization 

(Fig. 5) patterns  as  the  aerosol  parameters  are  varied.  One  other 

difference  in  this  mode  of  analysis  is  that  we  find  it  is  neces- 

sary  to  determine  the  actual  intensity  values  and  not  just  the 

normalized  values.  In  the  absence  of  measurements,  we  have  checked 

the  algorithm  that  has  been  developed  against  numerical  simulations. 

We  find  that  the  algorithm  is  quite  satisfactory.  Details of these 

analyses  are  expected  to  be  published  at a later  date. 

VI. CONCLUDING REMARKS 

Theoretical  studies  of  aeresol  radiative  effects  suggest  that 

the  heating  and  cooling  due  to  aerosols  can  be  as  much as 1 per 

day,  and  in  order  to  incorporate  their  effects  in  the  heat  budget 

of  the  atmosphere,  we  must  know  the  values of  the-parameters  of 

the  aerosol  model  (that  was  used  to  estimate  their  heating  and 

cooling  effect).  Thus,  local  measurements  can  yield  the  actual 

values  of  the  aerosol  parameters  but  they  are  not  the  values  that 

we  use  in  flux  calculations.  Radiative  calculations  involve  bulk 

properties  of  atmospheric  aerosols  and  it is these  that  must  be 

experimentally  determined.  It  is  possible  to  use  the  exact 

0 
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calculations  to  derive  empirical  formulasfor  the  fluxes  in  terms 

of the  aerosol  model  parameters and.?. thus,  the  incorporation  of 

the  flux  calculation  in  the  circulation  model  will  be  rather  inex- 

pensive  and  simple. 

Rather  than  consider  very  complicated  models  for  aerosols,  we 

decided  to  use  the  haze H type  distribution.  In  the  literature, 

it  is  quite  usual  to  find  exotic  multi-modal  and  other  distributions, 

but  for  our  purposes,  to  obtain a rough  estimate  of  all  the  param- 

eters,  the  simpler  description  will  suffice.  There  was,  however, 

a need  to  consider  the  consistency of the  whole  method.  We  have 

devised  such a scheme,  where  multiangular  and  multispectral 

measurements  are  used  to  verify  the  internal  consistency  of  the 

method.  The  large  number  of  experiments  performed  at UCLA with a 

ground-based  polarimeter  have  verified  these  hypotheses.  (The 

experiments  off  the  coast  of  Dakar,  as  part  of  the  GARP'  s1  Atlantic 

Tropical  Experiment  (GATE)  project,  yielded  aerosol  parameters  that 

seem  to  be  of  the  same  magnitude  as  those  determined  by  using  other 

methods  by  Quenzel,  Prosper0  and  others.) 

After  settling  the  question  of  the  internal  consistency  of  the 

method,  our  next  task  was  to  infer  the  aerosol  parameters  of  rep- 

resentative  air  masses. Los Angeles  basin  has  within  its  environs 

urban,  marine,and  desert  type  (geographic)  locations.  It  seemed 

sensible  to  monitor  the  air  masses  in  these  regions  and  deduce 

some  average  values  of  the  relevant  parameters so as  to  obtain an 

aerosol  climatology of sorts.  This  measurement  program  yielded  the 

parameters  summarized  in  the  table.  We  also  found  that  typical 

meteorological  conditions  resulted  in  predictable  changes  in  the 

aerosol  parameters.  For  instance,  it  was  found  that  the  marine  air 

masses  invariably  resulted in lowering  of  the  refzactive  index to 

near  that  of  water  and  Santa  Ana  winds  yielded  smaller  particles 

with  higher  refractive  index. 

'Global  Atmospheric  Research  Program 
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The  imaginary  part of the  index of refraction  was  less  than 

0.02. To determine  this any better,  we  would  have  to  obtain a 

catalog.  of  radiation  field  that is finer  than  what  we  have.  This 

is  not a very  serious  limitation,  because  we  can  easily  state  the 

error  that  this  imprecision  in  the  imaginary  part  introduces  in  the 

flux  calculations.  There  is a feeling,  in  certain  sections of the 

scientific  community,that  the  imaginary  part  of  the  aerosol  refrac- 

tive  index  is  the  sole  parameter  of  interest  to  weather  and  climate. 

This  is an erroneous  statement,  for a nonabsorbing  aerosol  (with 

no  imaginary  part)  can  reflect  the  solar  radiation  very  effectively, 

lowering  the  available  solar  energy,  and  cause a serious  modifi- 

cation  of  the  heat  budget.  Perhaps  the  imaginary  part  is  of  con- 

sequence  in  the  statements  of  local  heating  and  cooling  that  can 

be  of  importance  in  the  smaller  scale  processes.  Unfortunately, 

the  type  of  measurements  we  propose,  where  the  bulk  properties  are 

mqnitored,  is  probably  of  very  limited  value  for  these  studies. 

Thus,  the  imprecision  in  the  determination  of  the  imaginary  part 

of  the  index  of  refraction  is  not a serious  drawback  for  this  type 

of  an  experiment. 

The  ground-based-  experiments  have  validated  the  theoretical 

scheme  that  parameterizes  the  aerosol  effects  in  the  atmosphere. 

The  radiative  transfer  equation  that  was  solved  to  determine  this 

scheme  was  an  integral  equation,  and  these  have  the  property  that 

in  order  to  obtain  the  value of the  radiation  field  in  the  downward 

direction  (this  is  what  is  monitored  using  the  ground-based 

polarimeter),  the  radiation  field  in  all  other  directions  must  be 

known.  That  is, a solution  results  in  the  prediction  of  the  radi- 

ation  field  in  all  other  directions.  Thus,  we  can  proceed  with a 

great  deal  of  assurance  to  use  this  scheme  to  study  the  upwelling 

radiation  field, a mode of measurement  that  would  be used'by a 

satellite-borne  polarimeter. In this  measurement  mode,  the  ground 

reflection  no  longer  plays  an  innocuous  role  and,  therefore,  the 

use  of'Lambert  reflection  for  the  ground  is  not  appropriate. 
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Our  sensitivity  studies  show  that  at  the  long  wavelength 

region  the  signal  received  by a satellite  is  for  all  intents  and 

purposes  the  ground  source.  Thus, a long  wavelength  measurement 

of  the  intensity  and-polarization  would  be  approximately a measure- 

ment  of  the  ground  reflection  intensity  and  polarization.  If  we 

then  make  the  assumption  that  these  characteristics  of  the  ground 

do  not  change  much  in  the  short  wavelength  region (an assumption 

that  is  quite  reasonable  or  if  one  prefers  the  spectral  variation 

can  be  modeled  on  the  basis  of  experimental  results of ground 

reflection  properties),  we  will  be  able  to  calculate  the  radiation 

field  in  the  short  wavelength  region  for a realistic  ground  reflec- 

tion  matrix.  Now,  if  an  algorithm  can  be  developed  for  this  type 

of a ground,  then  we  will  be  able  to  infer  the  aerosol,  parameters 

from  satellite  measurements.  This  is  the  general  scheme  that  we 

are  using  but  before  attempting  the  full  problem;  we  addressed 

ourselves  to  the  simpler  question, "Can algorithms  be  devised  to 

infer  aerosol  particle  characteristics  from  satellite  measurements, 

if  there  is  no  ground  reflection  problem?" 

Physically  speaking,  sea  surface,  if  it  is  smooth,  can  approxi- 

mate a zero  ground  reflection  surface,  if  the  specular  reflecting 

part  is  excluded.  Since  the  oceans  form a large  part  of  the  scene 

viewed  from a satellite,  this  is  also a physically  relevant  study. 

Our  analysis  shows  that  aerosol  parameters  can,  indeed,  be  inferred, 

even  though  the  algorithm  in  this  case  is  more  complicated.  Over 

80 sets  of  synthetic  data  were,  analyzed  using  the  algorithm  and 

we  had  no  trouble  arriving  at  the  bulk  properties-  of  the  aerosol 

parameters.  .The  viewing  geometry used.was also  chosen  to  be  reason- 

ably  close  to  that  of a realistic  satellite  orbit.  It  is,  of 

course,  possible  to  extend  the  analysis  to  other  viewing  geometries 

SO as to  arrive  at  the  optimum  measurement  configuration. 

The  case of zero  ground  reflection  assured us that a polari- 

meter  measurement  from a satellite  over  the  oceans  can,  indeed, 

be  used  to  infer  the  aerosol  characteristics.  We  have  proceeded 
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t o   cons ide r   t he  case of  non-zero  ground r e f l ec t ion .   Th i s  w i l l  

involve a mult i -spectral   analysis .   Prel iminary work tha t   has  been 

completed shows t h a t  when a non-Lambert  ground i s  introduced  in  

the   shor t   wavelength   rad ia t ive   t ransfer   code ,   the   a lgor i thm  can  

still be  used. We w i l l ,  dur ing  the  course  of   the   year ,   extend 

t h i s  work t o  var ious   types  of  non-Lambertian  ground  surfaces and 

carry  out  checks on the algorithm. 

SYMBOLS 
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d i s t r i b u t i o n  

parameters i n   s i z e   d i s t r i b u t i o n   f o r   h a z e  H, L, and 

M, r espec t ive ly  

Lambert ground  albedo 

parameters i n   s i z e   d i s t r i b u t i o n   f o r   h a z e  H, L ,  and 

M, respec t ive ly  

s p e c i f i c   i n t e n s i t y   o f   s c a t t e r e d   r a d i a t i o n   f i e l d  

= 2n/x 

re f rac t ive   index   of  scatterer 

s ize   d i s t r ibu t io , :   func t ion  

degree   o f   po la r i za t ion   o f   s ca t t e r ed   r ad ia t ion   f i e ld  

ex t inc t ion   e f f i c i ency   f ac to r  

particle rad ius  

minimum and maximum value of r. 

observa t ion   zen i th   angle  

Sun zeni th   angle  

wavelength  of  l ight ' " 

opt ica l   depth  due t o   a e r o s o l   p a r t i c l e s  

observation  azimuth  angle , 

e w e r  exponent  on r in   Junge ' s  power l a w  d i s t r i b u t i o n  
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DISCUSSIONS 

Chahine: Have  you  compared  the  results  from  the  polarimeter  to 
those  from  the  multi-spectral  measurements? 

Kuriyan:  Yes.  About  two  or  three  years  ago,  Dr.  Chahine, a stu- 
dent  and I wrote a paper  on  multi-spectral  extinction  measurements. 
We  found  that  if  we  have  four  precise  measurements,  then it is 
possible  to  infer  the  effective  parameters.  But  unfortunately, 
the  precision  that  was  required  was  not  available  in  the UCLA 
instrument. So we  have  used  the UCLA instrument  strictly  to 
measure  the  optical  depth  and  make  sure  that  at  least  one  parameter 
is  fixed.  What I would  like  to  correct  is  the  feeling,  at  least  in 
certain  circles,  that  it  is  the  imaginary  part  of  the  refractive 
index  that  is  significant  for  weather  and  climate.  There  is 
nothing  farther  from  the  truth,  because a very  highly  reflecting 
aerosol  (with  zero  imaginary.part)  can  change  the  albedo  suf- 
ficiently  to  affect  weathex  and  climate.  It  is,  therefore,  very 
important  to  determine  the  total  refractive  index--both  the  real 
and  imaginary  parts.  Our  method,  however,  will  not  allow us to 
determine  imaginary  parts  better  than 0.02. 

Barks trom:  I think  on  the  downward  looking  experiment  one  ought 
to  use  considerable  care  regarding  the  model  of  the  lower  boundary 
condition.  It  is  possible  to  do  some  modeling  of  that  and  things 
seem  to  fall  into  two  categories.  But,  there  will  be  very  strong 
limb  brightening  for a number  of  surfaces,  including  things  like 
ocean  and  vegetation. 

Kuriyan:  There  are  two  approaches  that  we  adopt.  One  is  to  look 
at  zero  ground  reflection  areas  (sea  surfaces)  and  to  do  what . 

Dr.  Quenzel  talked  about,  which  is  to  model  the  roughness  for  the 
sea  and so on.  But  the  other  approach  is  based  on  our  sensitivity 
studies.  Any  measurement  at  about 0.7 or 0.8 microns seetlns to  be 
entirely  due  to  the  signal  from  the  ground,  because  the  aerosol 
and  molecular  effects  are so small  and  what  we  get  is  really a 
good  measurement  of  the  reflection  property  of  the  ground,  the 
polarization  of  the  ground  and so on.  Nor,  if  we  make  the  assump- 
tion  that  this  property  does  not  vary  when  you  go  to  the  short 
wavelength  region,  then  you  can  build  this  ground  reflection  prop- 
erty  into  the  radiative  transfer  code. So, in  the  next  stage  of 
the  development  when  we  consider  land-based  targets,  we  include 
a reflection  matrix  which  is  measured  at  the  long  wavelength  fre- 
quencies. 

Barks trom:  Yes,  if  you  want  to  model  that  with a doubling  code 
you  may  want  to  adopt a low  single  scattering  albedo  model  and a 
high  single  scattering  albedo  model. 
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Kuriyan: Yes, I.am sure  we  will  have  to  consider  the  full  range. 

Remsberg: Have  you  run  into  any  situations  where  your  catalog 
did  not  give  you a proper  answer or an  answer? 

Kuriyan:  Some of the  data  that  we  gathered  did  not  correspond 
exactly  to  the  tables.  These  occurred  during  some  meteorological 
activity  in  the  area  (such  as  moving  air  masses)  and so it  is  not 
clear  if  this  is  an  evidence  of  the  deficiency  of  the  model.  In 
other  words.,  during  stable  conditions,  the  data  that  we  gathered 
could  be  fit  with  the  Deirmendjian  H-type  distribution. 

Remsberg: The  point I was  getting  at  was:  suppose  you  had  distri- 
butions  that  really  couldn't  be  handled  by  the  modified 
Deinnendjian  case. As I understand  it,  your  catalog  is  really 
set  up  on  that  type  of a distribution  where  you  vary b as  your 
parameter.  If  you  had  some  multi-modal  distributions,  that  might 
not  hold. 

Kuriyan:  Well, I didn't  discuss  this  point.  The  first  paper  that 
I wrote  on  the  subject  had  to  do  with  the  fact  that  Deirmendjian's 
haze H, L and M were  equivalent  in  that  they  gave  rise  to  the  same 
phase.matrix. I can  then  take  any  linear  combination of the  three 
models  and  produce  the  same  phase  matrix  and I will  have a tri- 
modal  distribution.  Thus, I am not  worried  about  multi-modal 
distributions.  They  don't  interest  me,  because I am  interested  in 
the  radiative  fluxes  and  both  types  of  distributions  yield  the 
same  fluxes. 
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EXPERIENCE WITH THE INVERSION OF NIMBUS 4 

B W  MEASUREMENTS TO RETRIEVE THE 

OZONE PROFILE 

. Carl ton L. Mateer 
Atmospher i c   Env i ronmen t  Service 

The r e l a t i v e  merits o f  p r e s s u r e  increment and p a r t i a l  
d e r i v a t i v e   f o r m u l a t i o n s  o f  the ozone  inversion p r o b l e m   a r e  
d i s c u s s e d  b r i e f l y .  The h e i g h t   r a n g e  o f  v a l i d i t y  of the 
retrieved ozone p r o f i l e  and the e f fec t s  o f  a d d i n g   w a v e l e n g t h s  
t o  or o f  d r o p p i n g   w a v e l e n g t h s  from the inversion s y s t e m  a r e  
i n d i c a t e d .   I l l u s t r a t i v e   r e s u l t s   a r e   p r e s e n t e d  f o r  p r o f i l e s  
retrieved from B W  da ta   u s ing   Backus -Gi lber t ,   m in imum infor-  
mation  (Twomey) , and  quas i -opt imum  procedures .  

I. INTRODUCTION 

The Backscat ter   Ult raviolet  (BW)  experiment on Nimbus 4 

measures  nadir  direction BW radiances   in  1 2  wavelength  channels 

from  0.2555 pm t o  0.3398 pm. Four  long  wavelength  channels  (0.3125, 

0.3175, 0.3312, 0.3398 pm) are used to   i n fe r   t o t a l   a tmosphe r i c  

ozone content ,  and the  eight  shorter  wavelength  channels  (0.2555, 

0.2735,  0.2830,  0.2876,  0.2922,  0.2975,  0.3019,  0.3058 pm) are   used 

t o   i n f e r   t h e  ozone p r o f i l e  above  the main ozone dens i ty  maximum. 

In   t h i s   pape r ,  w e  are concerned  only  with  the lat ter problem. 

The normalized  contribution or weight ing  funct ions  for   the 

experiment are i l l u s t r a t e d   i n   F i g .  1. A t  the  shortest   wavelengths,  

absorption is  so s t rong   t ha t   pene t r a t ion  of t he   pho tons   i n to   t he  

atmosphere is severely impeded  and a s i n g l e   s c a t t e r i n g  model is  

very   accura te   for   ca lcu la t ing  the backscattered  radiance.  
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CONTRIBUTION FUNCTION 

F i g .  1.  C o n t r i b u t i o n s  t o  the n a d i r  direction r a d i a n c e   b y  

b a c k s c a t t e r i n g   a t   v a r i o u s  levels i n  the a tmosphere .  (1 a m  = 

101.3 kPa .I 
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However,  as  we  progress  to  longer  wavelengths,  the  absorption 

coefficient  decreases,  and  the  photons  penetrate  more  deeply  into 

the  ozone  layer.  Eventually,  the  absorption  is  weak  enough  to 

ensure  that a sufficient  number  of  photons  pass  through  the  ozone 

layer  and  multiple  scattering  in  the  troposphere  has  to  be  con- 

sidered  for  the  accurate  calculation  of  the  backscattered  radiance 

(wavelengths 0.3058 pm  and  longer  in  Fig. 1). 

In  estimating  the  ozone  profile,  we  have  restricted  ourselves 

to a consideration  of  those  wavelengths  which  are  relatively 

unaffected  by  multiple  scattering--namely,  those  for  which  at 

most  secondary  scattering  is  required  and  the  small  correction  to 

primary  scattering  may  be  parameterized.  There  are  two  reasons 

for  this  restriction.  First,.  Yar.ger  (Ref. 1) has  shown  that  there 

is  little  retrievable  information  about  the  ozone  profile  below 

the  ozone  density  maximum  in  measurements  at  those.wavelengths 

which  are  strongly  affected  by  multiple  scattering.  Second,  with 

many  ozone  profiles  to  be  retrieved,  the  necessary  multiple  scat- 

tering  calculations  would  be  very  expensive. As we  shall  see, 

this  effectively  limits  the  validity  range  of  our  retrieved  pro- 

files  to  levels  abdve  the  ozone  density  maximum. 

11.  FORMULATION OF THE INVERSION PROBLEM 

For a single  scattering  model,  the  basic  integral  equation 

may  be  written  as 
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a is  the  ozone  absorption  coefficient; X is  the  amount of x P 
ozone  above  pressure  level  p; Bx.is the  Rayleigh  scattering 

coefficient;  and  po.  is  the  surface  pressure. 

For  the  four  shortest  wavelengths, a X >> B,p. If  we 
h P  

set k = a (1 + sec 8 ) and  use  the  exponential  ozone  profile 

assumption at high  levels,  namely, 
A 0 

x = cp l/U 
P 

where c and u are  the  constants  specifying  the  profile,  then  it 

is  easy  to  show  that 

where r ( u  + 1) is  the  gamma  function  for  parameter u + 1. In 

short, a linear  regression  of In Q against  In k for  the  four  short- 
est  wavelengths  will  yield  an  estimate of the  profile  constants C 

and (5. We  shall  refer  to  this  profile  as  the  upper  first  guess. 
Next,  from  the  estimate of the  total  atmospheric  ozone  content  (see 

R e f .  21, a lower  first  guess is constructed  from  average  balloon 

profiles.  The  lower  and  upper  first  guesses  are  objectively  com- 

bined  to  provide  the  complete  first  guess  or a priori constraint 

profile  from  which  the  final  estimated  ozone  profile  is  obtained. 

We  have  used  two  convenient  formulations  for  this  final  impor- 

tant  step.  The  first  of  these  is  the  partial  derivative (P.D.), 

one  in  which 

c 
i ( -  ) 6Rn  xi = 6Rn Qi 

aan Q, 
aan xi 

where x is  the  amount  of  ozone  in  layer i for  the  first  guess. 

Typical  derivatives  are  shown as the  dashed  curves  in  Fig. 2. Use 
i 
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of  the  logarithmic  derivative  has  the  advantage  that  the  peak 

values  for  each  wavelength  are  about  the  same  magnitude.  The 

second  formulation  is  the  pressure  increment  (P.1.)  one,  which  we 

have  used  in a normalized  form,  as  follows,  from  the  quadrature 

form  of  Eq.  (.l) : 

where  the  asterisk  refers  to  the  observation  and  the  circumflex 

("hat") symbol refers to the  solution  profile, p is  the  mean 

pressure  in  layer i and  Ap  is  the  pressure  change  across  the 

layer.  The  quantity  in  the  curled  braces  is  the  kernel  for  which 

typical  values  are  shown  by  the  continuous  curves  in  Fig. 2. The 

normalization  (multiplication  of  each  exponential  by  pi/Q,*)  has 

the  effect  of  making  the  peaks  of  the  kernel  functions  approxi- 

mately  the  same  magnitude. 

i 

i 

In  the P.D. method,  the  unknowns  are  the  logarithmic  ozone 

content  changes  for  each  layer.  Total  atmospheric  pressure  is 

conserved  exactly,  but  total  ozone  will  generally  differ  somewhat 

from  the  first  guess  value.  In  the  P.I.  method,  the  unknowns  are 

the  fractional  changes  in  the  scattering  mass  in  each  layer  and 

the  ozone  against  pressure  relationship  is  recovered  by-integrating 

from  the  top  down.  Total  ozone  is consem& exactly,  but  total 

atmospheric  pressure  will  differ  somewhat  from  the  first  guess 

value.  These  are  trivial  considerations  for  profile  retrievals 

where  the  lower  limit  of  validity of the  final  profile  is  above 

the  ozone  density m a x i m u m  and, consequently,  well  above  the  Earth's 

surf  ace. 
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f i l e  v a r i a n c e   r e d u c t i o n  by quasi-opt imum ( P . I . )  method  ( smal l  circles); 
p r o f i l e   v a r i a n c e   r e d u c t i o n   b y   q u a s i - o p t i m u m  (P.D.) method ( p l u s   s i g n s ) .  
V e r t i c a l   s c a l e s   a t   r i g h t   s h o w   l o c a t i o n  of maximum for a l l  w a v e l e n g t h s  
for  P . I .  and P.D. m e t h o d s ,   r e s p e c t i v e l y .  (1 b a r  = 100 M a . )  
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111. INVERSION  PROCEDURES 

Results  from  three  inversion  procedures  are  presented  here. 

These  are  the  Backus-Gilbert,  the  minimum  information  (Twomey),  and 

the  quasi-optimum  procedures.  The  first  two  of  these  have  been 

amply  described  by  other  authors  at  this  Workshop.  The  quasi- 

optimum  procedure,asused  herein,  differs  from  the  optimum  one  in 

that  the  covariance  matrices  for  the  constraint  profile  (first 

guess  profile)  and  for  the  observational  errors  are  purely  diagonal, 

having  nonzero  elements  only on their  diagonals.  The  Backus- 

Gilbert  method is used  here  primarily  in a diagnostic  sense  to 

indicate  the  pressure  (height)  range  of  validity  of  the  derived 

profiles  and  to  illustrate  the  effects  of  adding  wavelengths  to  or 

of  dropping  wavelengths  from  the  inversion  system  as  dictated  by 

the  multiple  scattering  limitations  stated  earlier.. 

IV.  RELATIVE  MERITS OF THE  PARTI&  DERIVATIVE  AND  PRESSURE 

INCREMENT  FORMULATIONS 

If  there  are  relatively  few  data  sets  to  be  inverted  and/or 

computer  time  is  of  no  serious  consequence,  the  partial  derivative 

method  offers  the  advantage  of  simplicity  in  interpretation--it 

gives  the  change  in  ozone  in  each  layer  directly--and  we  are, 

after  all,  seeking  an  ozone  profile.  In an optimum  or  quasi- 

optimum  procedure,  the  profile  covariance  matrix  may  be  interpreted 

directly  in  terms  of  profile  errors  at  different  levels.  However, 

unless  the  first  guess  or  constraint  profile  is  extremely  close  to 

the  final  solution,  the  P.D.  system  is  nonlinear--a  minimum  of 

two  iterations  is  required  before  the  system  is  quasi-linear.  If 

there  are  many  data  sets  to  be  inverted  and  computer  time  is a con- 

sideration,  the  computation  (and  re-computation  with  each  iteration) 

of  the  partial  derivatives  is  time  consuming. 
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On  the  other  hand,  the  pressure  increment  formulation  avoids 

this  time-consuming  partial  derivative  calculation  and  is  very 

nearly  linear  on  the  first  iteration so that  further  iterations 

are  not  required.  With  the  optimum  or  quasi-optimum  procedure, 

the  profile  covariance  matrix  can  probably  be  interpreted  directly 

in  terms  of  ozone  profile  errors  at  the  different  levels.  The 

P.I.  method  does  require  an  integration  to  recover  the  pressure- 

ozone  relationship,  followed  by an interpolation  back  to  the 

standard  layers  used  in  the  atmospheric  model, a relatively  minor 

disadvantage. 

V. PmSSURE RANGE OF SOLUTION  VALIDITY 

Figures 3 and 4 contain  illustrative  results  for  the  Backus- 

Gilbert  method  using  the  P.D.  formulation.  The  solid  curves 

labeled  "SPREAD"  show  the  Backus-Gilbert  spread  (in  pressure 

scale-heights)  for a constant  (profile)  error  of 5% as a function 

of  atmospheric  pressure.  The  measurement  error  was  assumed  to 

have  the  form 

0 2  = 0.0001 + 0 .  000052 
X I. 

h 

where 0 is  the  measurement  error  of  the  backscattered  radiance 

(Ix) at  wavelength X.' This  provides  for a basic  measurement 
error of ? 1% (1st  term)  plus a noise  term  which  ,is  about 10% for 

the  lowest  backscattered  radiances  measured  at 0.2555 pm.  Curves 

for a constant  profile  error  of 10% (for a more  realistic  basic 

measurement  error  of 2%) are  very  nearly  coincident  with  the 

?I 
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Fig.  3 .  S p r e a d ,   f i r s t - g u e s s , a n d   s o l u t i o n   p r o f i l e s  fo r  N - x -  
6,7,and 8 for  Backus-Gilbert ( P . D . )  method. (1 bar = 100 kPa; 

1 atm = 101.3 -kPa.) 
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plotted  curves.  Figure 3 is a high-latitude  northern  hemisphere 

case  for  December 1970. The  "regular"  solution,  involving  small 

secondary  scattering  corrections  at  0.3019  and  0.3058  um,  would 

utilize  the  measurements at 8 wavelengths  (N = 8). The  solution 

profiles  are  the  dashed  curves.  The  solution  profile  for  N = 6 

diverges  appreciably  from  the  N = 8 solution  profile  at  about x 
3 mb and  the  Nx = 7 solution  profile  diverges  appreciably  at  about 

6 mb (1 bar = 100 kPa).  These  are  the  levels  at  which  the  spread 

begins  to  increase  rapidly  and  one  is  tempted  to  infer  that  these 

levels  represent  the  respective  lower  validity  limits  for  the  N = 

6 and NA = 7 solution  profiles.  If  this is correct,  then  the 

lower  validity  limit  for  the 8 wavelength  solution  profile  is  near 

10 mb, and  the  upper  validity  limit  is  near 0.4 to  0.5 mb. Figure 

4 is a high-latitude  case  for  the  northern  hemisphere  in  May  1970, 

for a solar  zenith  angle  of 61 . The  "regular"  solution  would 

utilize 7 wavelengths  and  would  involve  small  secondary  scattering 

corrections  at  0.2975  and  0.3019  pm.  In  this  case,  the  picture is 

not so clear.  The  Nx = 4 and NA = 5 solution  profiles  remain 

close  together  down  to 30 mb, but  they  diverge  appreciably  from 

the NA = 6 and NA = 7 solution  profiles  below  about 7 mb,  which 

is  also  the  level  at  which  the  spread  curve  for N = 5 begins  to 

increase  rapidly.  The  Nx = 6 and NA = 7 solution  profiles  are 

virtually  coincident  down  to  about 16 mb  and  thereafter  are  sepa- 

rated  by  about 5%. The 16 mb level  is  also  the  point  where  the 

spread  curve  for N = 6 begins  to  increase  rapidly.  It  appears 

that  the  lower  validity  limit  for  the N = 7 solution  profile 

should  be  about  25  to 30 mb. In  this  case,  in  common  with  others, 

the  upper  validity  limit is not so clear-cut  as  in  Fig.  3',  but 

would  appear  to  be  at  about  0.5 mb. 

x 
x 

x 

0 

x 

A 

x 

The  dotted  curve  in  Fig. 2 is  the  spread  for N = 8. If  we A 
wanted  to  estimate  the  upper  and  lower  validity  limits  of  derived 

profiles  without  calculating  the  spread,  it  appears  that  the 

upper  validity  limit  is  approximately  at  the  level  where  the 
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0.2555vmpartial  derivative  is a maximum,  and  the  lower  validity 

limit  is  at  the  level,  below  the  maximum  of  the  partial  derivative 

for  the  longest  wavelength  used,  where  the  partial  derivative  is 

about 70%.of the  max'imum  value. 

Information  about  the  probable  range  of  solution  validity  may 

also  be  estimated  from  the  quasi-optimum  method.  This  has  been 

done  for  both  the  P.I.  and  P.D.  formulations  by  using a constant 

value 0.4 for  the  variance  of  the  first  guess  or  constraint  profile 

at  all  levels  and  noting  the  variance  reduction  in  obtaining  the 

solution  profile.  Curves  of  this  variance  reduction  are  labeled 

6a2 (P.I.)  and 6a2 (P.D.)  on  Fig. 2. These  curves  do  not  delineate 

validity  limits  as  well  as  the  Backus-Gilbert  spread.  They  suggest 

a possible  upward  extension  of  the  upper  limit  for  the  P.I.  formu- 

lations  and a possible  downward  extension  of  the  lower  limit  for 

the  P.D.  formulation,  as  compared  to  Backus-Gilbert.  In  all  cases, 

it is clear  that  the  lower  validity  limit  is  above  the  main  ozone 

density  maximum,  which  is  generally  within  the  15 to 25 km range, 

depending  on  latitude  and  season. 

VI. SOME ILLUSTRATIVE  FESULTS 

Figures 5 to 8 inclusive  show  final  solutions  derived  by 

various  methods  for  four B W  wavelength  scans. In each  case,  the 

first  guess,  or  constraint,  profile  is a solid  curve;  and  the 

remaining  profiles  may  be  identified  as  follows. Case 1--Profile 

curve  of  short  dashes:  This is the  one-iteration  Backus-Gilbert 

solution  for  the  P.D,  formulation;  secondary  scattering  corrections 

were  not  applied;  profileerror  is a constant 5% or 10% for f 1 or 

f 2% basic  measurement  error,  respectively  (as  in Eq. (6)). 

Case 2--Profile  curve  of  long  dashes:  This  is  the  quasi-optimum 

solution  for  the  P.D.  formulation;  constraint  profile  variance is 

a constant 0.4; basic  measurement  error is 2%. Case 3--Profile 

curve  of  square  symbols:  This  is  the  quasi-optimum  solution  for 

the P. I. formulition;  constraint  profile  variance  is a constant 
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Fig .  6 .  F i r s t - g u e s s  and v a r i o u s   s o l u t i o n   p r o f i l e s .  See 

t ex t  f o r  e x p l a n a t i o n  of symbols. (1 b a r  = 100 kPa; 1 atm = 

101.3 kPa .) 
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0.02; basic  measurement  error  is k 2%; for  this  combination.  The 

overall  constraint  is  about  the  same  as  in  Case 2. Case 4-- 

Profile  curve  of  triangular  symbols:  This is the  quasi-optimum 

solution  for  the  P.D.  formulation;  constraint  profile  variance  is 

given  by  the  curve so identified  in  Fig. 5; basic  measurement 

error  is k 2 %. This  is  the  strongest  constraint  of  the  five  cases 

presented  and  the  solution  profile,  therefore,  deviates  least 

overall  from  the  constraint  profile. Case 5--Profile  curve  of 

small  circles:  This  is  the  minimum  information  (Twomey)  solution 

forthe P.I. fonnulatio.n;constraint  profile  variance  is  the  identity 

matrix;  the  measurement  variance  is  invariant  with  wavelength  and 

is 0.02 times  the  trace  of  the  kernel  "cross-product"  matrix; 

secondary  scattering  corrections  were  not  applied. 

For  comparison,  the  average 45 N rocket  profile  derived  by 0 

Krueger  and  Minzner  (Ref. 3) is  shown  in  Fig. 7. At  most  levels, 

we  find  solution  profiles  which  are  both  higher  and  lower  than  the 

mean  rocket  profile  for  the  four  cases  presented.  For  each  indi- 

vidual B W  scan,  the  difference  between  the  highest  and  lowest 

solution  profile  at  any  level  does  not  exceed  about 20%. Although 

total  ozone  is  nearly  the  same  for  the B W  scans  profiled  in 

Figs. 5 and 7, the  inferred  high-level  ozone  profiles  are  very 

different.  These  differences  illustrate  changes  that  appear  to 

occur  between  profiles  before  (Fig. 5) and  after  (Fig. 7) the 

well-known  stratospheric  warming  phenomenon  of  high-latitude 

winters. 

VII- CONCLUDING REMARKS 

From  the  illustrative  solutions  themselves,  there  appears  to 

be  little  to  choose  between  the  P.I.  and  P.D.  formulations  (com- 

pare  curves  of  long  dashes  and  of  squares).  However,  if  one  has 

a million  or  more B W  scans  to  evaluate,  the  P.I.  formulation 

should  lead  to  significant  savings  in  computer  time. 
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Since  the  solution  profiles  depend  significantly  on  the  con- 

straint or first  guess  profile,  and  on  the  variances  assigned  to 
this  profile  and  to  the  instrument  coservations,  considerable 

attention should'be.paid to  these  factors  in  establishing a B W  

evaluation  system.  The  merits  of  using  full  covariance  matrices 

as  opposed  to  the  diagonal,  or  variance  matrices  used  here,  is 

not  clear.  One  might  be  tempted  to  conclude  that  the  use of the 

complete  profile  covariance  matrix  could  lead  to  spin-off 

"correlationoo  information  about  the  ozone  profile  below  the  main 

density  maximum. I doubt  this  very  much;  more  such  information  is 

likely  available  from  total  ozone-profile  correlations  and  should 

be  incorporated  in  the  first  guess  profile.  In  any  event,  the 

information  necessary  to  establish  the full covariance  matrix  is 

not  yet  available. A partial  covariance  matrix  can,  of  course,  be 

generated  from  the B W  data  themselves  by  operating  "along  the 

track"  or  on a regional-seasonal  basis.  Such  an  approach  may  be 

adopted  for  the  evaluation  of  the  data  from  the aanning BW 

experiment on Nimbus G. 

SYMBOLS 

P.I. 

QA 

Q*A 

constants  in  equations  for  exponential  ozone  profile 

backscattered  radiance  at  wavelength A 
0 (1 + sec eo) 
number  of  wavelengths  used  in  an  inversion 

atmospheric  pressure 

atmosphere  pressure  at  the  Earth's  surface 

average  atmospheric  pressure  in  layer i 

atmospheric  pressure  change  across  layer i 

x 

estimate  of  Ap  for  solution 

partial  derivative  inversion  formulation 

pressure  increment  inversion  formulation 

quantity  defined  by Eq. ( 2 )  

observed  value  of Q 

i 
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Q(X,, €I ) integral  function  of  wavelength  and  zenith  angle  which 

is  proportional  to  backscattered  radiance 
0 

Qi 
x x  amount  of  ozone  in  lyaers  i  and j, respectively 

X amount  of  ozone  above  pressure  level  p 

value  of Q in  layer  i 

i' j 

P 
x a ozone  absorption  coefficient  at  wavelength 

molecular  scattering  coefficient  at  wavelength $x 
r (0) gamma  function  of  argument 

602 reduction  in  error  variance  for  an  ozone  profile 

achieved  in  an  inversion 

solar  zenith  angle 

x wavelength 

xi amount  of  ozone  in  layer  i 

n total  amount  of  ozone 
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DISCUSSION 

Cerni: Were any rocket  flights  taken  simultaneously  as  the 
satel l i te  passed  overhead which could serve as ground t r u t h  
measurements? 

Mateer: We do not have very many. There are two for which I have 
the  resul ts ,  although I understand  that  there are more. Here is 
one  taken on February 24,  1971, a t  Barking  Sands,-Hawaii, which 
i s  not  too  bad. (Shows Fig.D-1).  This w a s  done with  the  pressure 
increment  formulation and the Twomey  minimum information method 
with a ra ther   small   value  for  Y ;  I believe it was 0.005 times 
the   t race ,  which is  a l i t t l e  too small. 
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Fig. D - 1 .  Mixing   ra t io   Comparison  f o r  Barking  Sands  data 
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Mateer: The s o l i d   l i n e  is  the   rocke t   r e su l t   w i th   t he   e r ro r   ba r s  
on it and the   dashed   l ine  is  t h e  B W  inversion.  There i s  another 
one  here (shows Fig.  D - 2 ) .  I guess it i s  not  too  bad.  This i s  
fo r   Po in t  Mugu on June 18, 1970. Again, the   dashed   l ine  is t h e  
B W  r e s u l t .  

0.2 - 

0.4 

- 1.0 
- 0.8 

- 0.6 

- 

E 2.0 - 
a 

3 4.0 
- 

E 6.0 - 
Z 8.0 - 

10 - 

w -  

3 

E 

20 - 

40 - 

\ 
\ 

JUNE 18,  1970 
POINT MUGU 
34"N, 119"W 

6oL 80 0 I I I I I I I 
2 

I 
4 

I 
6 8 10 12  14 16  18 

MIXING RATIQ (pgrn/grn, 
0 

Fig .  0-2. M i x i n g   r a t i o   c o m p a r i s o n  for Point Mugu d a t a  
(1 b a r  = 100 e a )  . 
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TEMPERATURE  SENSING:  THE  DIRECT 

ROAD TO INE'ORMATION 

Lewis  D.  Kaplan 
The U n i v e r s i t y  o f  Ch icago  

The r e t r i e v a b i l i t y  o f  d e t a i l e d   t e m p e r a t u r e   s o u n d i n g s  
f r o m   r e m o t e   m e a s u r e m e n t s  o f  emission s p e c t r a   d e p e n d s  not so 
much on how the d a t a   a r e   t r e a t e d   a s  on what the d a t a   a r e .  I t  
i s  shown t h a t  the s h a p e  o f  the w e i g h t i n g  functions depends  
on the n a t u r e   o f  the p r e s s u r e   a n d   t e m p e r a t u r e   d e p e n d e n c e  of 
the t r a n s m i t t a n c e ,  which d i f f e r  f r o m  one p a r t  of the s p e c t r u m  
t o  a n o t h e r   a s   w e l l   a s   w i t h   s p e c t r a l   r e s o l u t i o n .  

I n c l u d e d   a r e   r e s u l t s  o f  a s t u d y  b y  K a p l a n ,   C h a h i n e ,  
S u s s k i n d ,   a n d   S e a r l ,  which s h o w   t h a t   c a r e f u l  selection o f  
c h a n n e l s   c a n   r e s u l t  i n  much   narrower   we igh t ing  functions t h a n  
those c o r r e s p o n d i n g  t o  c h a n n e l s   t h a t   h a v e   a c t u a l l y  been u s e d .  
More d e t a i l e d  and m o r e   a c c u r a t e   r e t r i e v a l s   c a n  be o b t a i n e d ,  
therefore, i f  the i n s t r u m e n t a l   d e s i g n  i s  more c a r e f u l l y   p l a n n e d  
on the b a s i s  o f  s o u n d   t h e o r e t i c a l   p r i n c i p l e s .  

If  there  is  any  common  thread of this  Workshop,  it  is  the  ques- 

tion  of  information  content.  In  particular,  much  of  the  discussion 

has  been  devoted  to  ways  of  obtaining  more  information  out of the 

measurements  that  are  being  made.  Dr.  Rodgers,  for  example,  sug- 

gested  introducing  other a p r i o r i  infomation, which  he  calls  "vir- 

tual  measurements."  The  difficulty,  however,  is  that we are  using 

the  measurements  for  a  purpose,  namely,  the  use  of  the  retrievals 

in  numerical  weather  prediction  and  the  fact  is  that  numerical 
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is  twice as narrow.   In   fact ,  if the   t r ansmi t t ance  is given by 

the   weight ing   func t ion   has   the  form 

- d T .  ./dRnp = nc .p exp(-' c .p ) n n 

VI 3 7 

which w e  may r ewr i t e  as 

- dT ./dRnp = np exp (- p ) 
n n 

V I  

i f  w e  t ake  p i n   u n i t s  of p = w c j ;  and t h e   r a t i o  of t h e  max 
weighting  function a t  p t o  i ts  value a t  P is given  by 

max 

Thus, t he   en t i r e   shape  i s  compressed by a f ac to r   o f  n on a Rnp 

scale r e l a t i v e  t o  t h a t   o f  Eq. ( 3 )  . 
It t u r n s   o u t   t h a t  it is  no t  so e a s y   t o   l o o k   d i r e c t l y   i n   t h e  

wings  of l ines ,   par t icu lar ly   in   the15pmband  of  C02, which i s  

strewn  with  very many i so tope  and Fermi resonance  bands.   In  fact ,  

t he   on ly   pa r t   o f   t he  CO atmospheric  emission  spectrum  in  which 

t h e   l i n e  wings are clean i s  t h e  R branch  of  the 4 . 3  pm band. This 

region  of  the  spectrum  has  the added  advantage  of  strong  tempera- 

t u r e  dependence  of  the  black body func t ion ,  which further  narrows 

the   t roposphe r i c   pa r t  of the  information  funct ion Bd-r/dRnp. There 

is  a b roaden ing   e f f ec t   i n   t he   s t r a tosphe r i c   pa r t ,   bu t  it i s  more 

than  compensated €or by the   s t rong  exponent ia l   decay  in  a weighting 

f u n c t i o n a f   t h e  form of Eq. ( 5 ) .  

2 

This i s  i l l u s t r a t e d  by the  curves  of  Fig.  1, taken from the  

aforementioned  Applied  Optics  paper. The le f t -hand   s ide   conta ins  

weighting  functions €of very  narrow band passes cen te red   i n   t he  

, wings  between some of   the  c losely  spaced  l ines   of   the  4 . 3  pm band 

R-branch. They are indeed  very  narrow  and become even  narrower 

in   the   t roposphere  when mul t ip l i ed  by the   b lack  body i n t e n s i t y  B, 
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F i g .  1. 4.2  pm w e i g h t i n g   f u n c t i o n s   a n d   n o r m a l i z e d   i n t e g r a n d  

for Av = 0 . 2  cm . (1 bar  = 100 kPa .) (From R e f .  1 .) -1 

as  shown  on  the  right-hand  side,  to  obtain  the  source  distribution 

of  the  emerging  photons.  In  the stratosphere,multiplication by B 

has  a  broadening  effect,  however,  which  illustrates  the  point  made 

earlier  by Dr. Chahine  that  less  information  comes  from  the  regions 

of  minimum  temperature,  because  the  signal  is  mixed  with  effective 

noise  on  either  side. 

But,  in  the  troposphere,  both  sets  of  curves  are  very  narrow 

indeed,  and  we  have  many  more  channels  than  have  been  usable  for 

sounding  up  to  this  time.  The  ratio  of  the  pressures  at  the  half- 

peak  points  of  the  weighting  functions,  which  should  be  about 3-1/2 

according  to  our  previous  discussion,  turns  out,  in  fact,  to  be 
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about  2-1/2!  The  reason  for  this  is  that  there  is  a  further 

weighting  besides  the  p2  factor  in  the  wings  of  the  lines,  namely, 

that  due  to  the  Boltzmann  factor,  which  enters  linearly  into  the 

wing  absorption  coefficients.  We  had  assumed  in  arriving  at Eqs. 

(4) and (5) that  the  line  intensities  were  independent  of  tempera- 

ture.  They  are  not,  however,  and  the  Boltzmann  factor  has  the 

effect  of  further  narrowing  the  weighting  functions  of  the  chan- 

nels  near  the  high-J  lines,  which  peak  in  the  middle  and  lower 

troposphere.  The  effective  power  n  of  p  for  the  middle  troposphere 

channels,  which  appears  in Eqs. (6), (7) and (8), is  about  three. 

For  the  lowest  weighting  functions,  it  is  closer  to  two  since  the 

temperature  independent  induced N absorption  and  far  wings.of  the 2 
strongest CO lines  dominate. 2 

These  weighting  functions  were  calculated  at  Goddard  Institute 

for  Space  Studies  by  using  the  Susskind  line-by-line  transmission 

program  with  an  assumed  resolution  of 0.2 cm-’ , which  is  very  dif- 
ficult  to  accomplish  in  practice.  We,  therefore,  decided to see 

how  much  narrowing  of  the  weighting  functions  would  result,  at  not 

so high  a  resolution,  from  the  temperature  effect  combined  with  the 

p2 effect  of  the  large  amount  of  background  emission  from  the 

collision  broadened N2 fundamental. 

Figure 2 shows  the  resu1t.s  of  calculations  for  an  optimized 

set  of 2 cm-l  channels.  At  this  spectral  resolution,  each  channel 

includes  three  to  five  lines.  The  vertical  resolvability  of  the 

temperature  profile  is  definitely  not  as  good,  but  it  is  not 

really  bad  either.  The  ratios  of  the  pressures  at  half-peak  levels 

of  the  weighting  functions  are  generally  of  the  order 3 in  the 

troposphere,  and  the  effect of the  black  body  factor  results  in  a 

restriction  of  the  information  content  to  a  very  narrow  region 

for  each  of  the  tropospheric  channels. 

1 

1- The  sharp  decay  of  the  lower  parts  of  the  weighting  functions 

results  in  part  from  the  regular  spacing  of  the  lines,  which  maxi- 

mizes  the  rate  of  decrease  of  transmittance  with  depth. 
\ 
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F i g .  2 .  4.2 pm w e i g h t i n g   f u n c t i o n s  and n o r m a l i z e d   i n t e g r a n d  

for Av = 2 c m  . (1 bar = 100 kPa.) ( F r o m  R e f .  1 .) -1 

Another e f f e c t  of t he  B f a c t o r   a t   t h i s   d e c r e a s e d   s p e c t r a l  

r e so lu t ion ,  however, i s  an  unacceptable  smearing  of  the  strato- 

spheric   information  content   curves  on the  r ight-hand  s ide  of   the 

f igure.   This   can  be  seen  to  be the   e f f ec t   o f   t he  B f a c t o r  by com- 

par ison  with  Fig.  3 ,  which p resen t s  similar curves   for  0.5 cm 

channels   in   the  15-vm band  of CO The 15-urn channe l s   a r e   de f i -  

n i t e l y   b e t t e r   f o r  sounding  the  stratosphere.  

-1 

2 '  

A n  obvious  solution  to  the  sounding  problem is  t o   g r a f t  

t o g e t h e r ,   l i k e  D r .  van  de  Hulst ' s   apples ,   the  4.2-urn channels   for  

the  t roposphere,  where t h e y   g i v e   b e t t e r   v e r t i c a l   r e s o l u t i o n ,   w i t h  

t h e  15-pm channe l s   fo r   t he   s t r a tosphe re ,  where  B-smearing i s  

minimal. It  i s  n o t   t o o   d i f f i c u l t   t o  make a n   i n s t r u m e n t   l i k e   t h i s  

and D r .  Chahine i s ,  i n   f a c t ,   s t a r t i n g  a design  s tudy  for   such a 
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sounder.  Figure 4 contains  curves  of  Bd.r/dhp  for  such a grafted 

sounder on the  r ight .  It i s  compared with simi'lar curves on the 

le f t   fo r   the   channels  of the NIMBUS 6 High Resolution  Infrared 

Radiation  Sounder (HIRS) t h a t  D r .  Susskind  believes  to  give non- 

redundant  information, and which'he  uses  for  his  retrievals.  

This  comparison shows the improvement in   d i scre t iza t ion  of 

the  information  content of sampled emission  spectra  that can be 

obtained by careful   se lect ion of  channels. It  i l l u s t r a t e s   t h a t  

proper  planning  of  the measurements themselves may resolve some of 

the problems t h a t  we have devoted so much time to  during t h i s  

Workshop. 
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DISCUSSION 

P e p i n :  I would  like  to  ask  about  the  atmospheric  contaminants 
that  are  in  the  four  micron  region.  Have  you  looked  at  the  effects 
of  some  of  the  contaminants? 

Kaplan:  In  this  part  of  the  spectrum  there  aren't  any.  There  are 
a few  very  weak  water  lines  all  the  way  down  on  the  tails  of  the 
bands.  There  may  be a few  nitrous  oxide  lines  but  they  are  very 
weak  transitions;  they  would  be  among  the  isotope  bands.  The  main 
contaminant  is  actually a help.  It  is  the  pressure  broadened 
nitrogen  fundamental.  It  isn't  even  contaminated  by  carbon  dioxide 
lines  in  this  region.  The  extra  lines--the  hot  bands  and  the  iso- 
tope  bands--are  almost  all  in  the  P-branch. 

Rodgers :  I know  it  is  very  attractive  to  think  that  the  number of 
photons  is  proportional  to  the  amount  of  information  you've  got, 
but  it  isn't  true.  It's  the  rate  of  change of the  number of photons 
with  respect  to  the  thing  you  are  interested  in. 

Kaplan:  Yes,  okay. 

Rodgers :  So you  should  have  dB/dT  in  there. 

Kaplan:  No,  you  shouldn't  have  dB/dT  in  there.  What  usually  is 
done  is  to  write  (dB/dT)(dT/dRnp)  for  what  you  really  want,  which 
is  (d/.dT)  /B(d-r/dRnp)  dRnp.  And  that  is  all  right  as  long  as  the 
transmission  is  independent  of  temperature.  What  we  are  talking 
about  here  are  very  strong  temperature  dependent  transmissions. 
So one  should  actually  do  the  derivatives.  Dr.  Susskind  has  done 
the  derivatives  and  they  turn  out  to  be  very  much  the  same  as  what 
I have  shown. 

Rodgers :  And  the  other  point  is  that  there is no  reason  why  you 
shouldn't  use  selective  absorption  to  improve  the  shape  of  the 
weighting  functions.  This  is  almost as good  as  going  to  very  high 
resolution. 

Kaplan:  Well,  one of the  problems  with  selective  absorption  is 
that  when  you  are  making  measurements  over a broad  band  you  are 
taking  into  account  not  only  the  wings  of  the  strong  lines  that 
you  are  after,  but  the  central  portions  of  weaker  lines  that  fall 
within  this  region.  If  you  compare  the  SCR  (Selective  Chopper 
Radiometer)  weighting  functions  with  the  weighting  functions  that 
we  have  gotten,  you  will  see  this  effect  coming  in  because  the  SCR 
doesn ' t really  get  what  one  would  expect  from  the  p2  effect . I 
attribute  it,  at  least  in  part,  to  the  weak  lines. 

609 



Rodgers: Have  you  tried  computing  SCR-type  weighting  functions 
for  your  case  to,  say,  five  wave  number  intervals? 

Kaplan: Yes,  we  did. 

Wark: There  happens  to  be  another  little  factor  here  called 
aerosols  and  these  are  the  main  contaminants  that  you  have.  There 
are  clouds.  And  for  one  thing  one  must  first  solve  for  the  amount 
or  the  effects  of  clouds,  because  these  weighting  functions  are 
grossly  distorted  by  the  influence  of  clouds.  Furthermore,  in 
this  particular  spectral  region  those  very  clouds  also  reflect  sun- 
light  very  severely.  Would  you  please  comment  on  these  two  things? 

Kaplan: Yes, I am very  glad  you  brought  up  the  subject.  First  of 
all, I really  promised  in  the  original  abstract  to  talk  about  the 
combination  of  the  bands  for  the  various  things.  One  of  the 
advantages  of  making  measurements  using  an  array  of  detectors  as 
was  used  on  the SIRS instrument,  as  you  know,  is  that  one  can  make 
measurements  in  different  orders.  It  turns  out  that  if  you  look 
at  the 4 micrometer  band  in  fourth  order,  you  are  looking  at a 15 
micrometer  band  in  first  order,  and  that  is  why I have a half a 
wave  number  rather  than  two  wave  numbers  for  that 15 pm  band.  You 
are  looking  in  the  window  region  an  second  order  and 6 micrometer 
water  band  in  third  order.  Probably  the  most  effective  way, I 
think,  of  trying  to  eliminate  the  effects  of  clouds--we  usually 
have  partial  cloud  cover--is  to  make  temperature  sounding  measure- 
ments,.not  necessarily  complete  soundings,  throughout  the  whole 
region  in  both  the 4 micrometer  and  the 15 pm  band  as  has  been 
outlined  by  Dr.  Chahine. Also to take  advantage of the  changes of 
the  black  body  function  and  their  differences  in  the  two  bands,  and 
it  gives  us  much  more  precise  information  about  the  clouds.  And 
getting  this  high  resolution  in  the 4 micrometer  band  means  that 
you  will  be  able  to  specify  it  even  more. I think  that  being  able 
to  sound  in  the  presence  of  clouds  is  to  us,  in a way,  the  most 
important  reason  for  trying  to  do  the  analysis  in  this  direction. 
With  regard  to  the  scattering,  it  is a problem.  But  it  is  pos- 
sible  again  to  make  measurements  of  sunlight  outside  of  the  band. 
This  is  being  planned.  But  the  other  thing  that  should  be  remem- 
bered  is  that  when  you  see  the  scattered  sunlight  it  is  going 
through  two  traversals.  You  are  usually  looking  straight  down, 
so you  usually  have  an  air  mass  that  is  somewhat  larger  than  two-- 
relative  to  the  vertical  soundings.  And  this  does  help a great 
deal  to  eliminate  the  effect;  however,  it  probably  still  remains 
there,  particularly  for  high  clouds.  It is necessary  to  look 
at  reflected  radiation  at  several  wavelengths  to  try  to  at  least 
get  the  outline  of  the  sunlight  and  hope  that  when  you  extrapolate 
it  into  the  R-branch  of  the  four  micron  band  that  it  keeps  the 
same  properties. 
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Barkstrom: It  seems  to  me  that  there  is,  perhaps, a general 
question  that  you  have  raised  which  is  related  to  the  question  of 
how  the  measurements  are  to  be  used.  The  question'you  seem  to  be 
asking  is,  what  does  the  meteorological  community  need  in  terms of. 
accuracy on temperature  structure  and  what  is  the  resolution  that 
is  needed  in  order  to  derive a model?  And  it  seems  that  some  of 
the  things  Dr.  Rodgers  mentioned  earlier  regarding  the  uncertainty 
in a statistical  sense  could,  perhaps,  be  .tied  into  the  things  that 
you  are  saying  here.  And  then  the  question  is  raised,  what  do  we 
need  to  know  from  the  meteorological  community  in  order  to  do  the 
job? Let  me  make  this a little more quantitative.  If I remember 
Dr.  Rodgers'  presentation,  it  seems  that  there  is a relation 
between  the  uncertainty  in  the  measurement  and  the  error  in  the 
satellite  measurements.  The  question  would  be  whether  we  could 
get  estimates  of  the  uncertainty  that  is  needed  from  the  meteo- 
rological  Community  which  could  then  be  inverted  to  estimates  of 
the  error  and  the  resolution  needed  in  the  measurements? 

Kaplan: Yes,  first  of  all I am a meteorologist  and  that's  why I 
am  doing  this. I feel  that I need  this  data.  The  uncertafnties 
themselves  really-are  related  to  the  resolution.  For  example,  in 
the  discussion  of  Chahine's  relaxation  method--when  it  is  used  in 
connection  with  the  HIRS  data  or  other  data,  it  is  an a priori 
method  in  principle.  But  it  turns  out  not  to  be  an a priori  method 
in  practice  when  the  levels  you  are  sounding  are  widely  removed 
because  you  do  have  to  make  assumptions  about  how  the  atmosphere 
is  behaving  all  along  the  way.  The  atmospheric  temperature  does 
not.change very much  with  height  and  if  you  can  make a measurement, 
say,  every  kilometer,  then  it  would  be  very  difficult  to  obtain a 
temperature  distribution  which,  in  connection  with  numerical 
weather  prediction,  can  turn  out  to  be  very  much  different  from 
what  you  want.  It  also  turns  out,  contrary  to  what  the  dynamic 
meteorologists  had  believed,  that  in  certain  parts  of  the  atmo- 
sphere,  particularly  in  the  tropics,  small  changes  in  static  sta- 
bility  of  the  upper  troposphere  makes a difference  in  the  tropical 
circulation.  And  these  small  changes  are  particularly  what  we  are 
looking  for.  If  you  constrain  by  introducing  statistics,  you  are 
throwing  out  information,  you  are  keeping  yourself  from  gaining 
information that.is the  most  interesting  part  of  the  meteorological 
information  you  want.  Also,  if  we  are  looking  for  climatic  change, 
and  we  feel  that  there  has  been a change,  due  to  the  introduction 
of  aerosols,  and  the  changes  in  ozone  distribution  and  photo- 
chemistry,  we  cannot  use  past  data  in  order  to  interpret.  And  if 
we  try  to  make  models  based  upon  temperature  soundings  in  order 
to  use  the  statistics  we  would  not  have  been  able  to  reproduce, 
for  example,  the  last  month  and a half's  soundings  because  the 
temperature  distribution  during  that  period  would  not  have  ever 
really  existed  in  the  90-year  history  of  radiosonde  soundings.  It 
was  at  least 94 years  since  we  had  weather  conditions  east  of  the 
Rockies  as  we  have  now.  These  anomolous  conditions  are  what  we 
are  mostIy  after. 
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OPEN  DISCUSSIONS I1 

van  de Hulst: We have  gradually  entered  into  the  open  discussion 
and I th ink  D r .  Barkstrom  put  the  very  appropriate  question  for 
t h i s   en t i r e   con fe rence .  I have some  comment on my own on t h a t ,  
but   they are not   very   exper t .  Does somebody else want t o  comment? 

Susskind: I want t o  make a comment that i s  not   very   exper t  a t  a l l .  
.It is  j u s t  a f e e l i n g   t h a t  I have  about real measurements  and v i r t u a l  
measurements  and  something l i k e   t h i s .  I never   thought   about   vir tual  
measurements before ,   bu t  what w e  are looking for  i n  soundings. . . 
The po in t  I want t o  make i s  I f e e l   t h e r e  i s  c e r t a i n l y   i n f o m a t i o n  
conten t   in   the   observa t ions ,   the  real measurements, b u t   t h e   i n f o r -  
mation  content i s  n o t   s u f f i c i e n t   t o   g i v e  you everything you are 
looking  for.  A s  a matter of f a c t ,   i f  you are looking   for  a d e t a i l  
t empera tu re   p ro f i l e , i t  i s  n o t   s u f f i c i e n t   t o   g i v e   t h a t  a t  a l l .  And 
t o  do t h i s  you have t o  make some kind  of  assumptions,   but  to start 
saying  that   assumptions  that   are   based on statistics o r  some fee l ing  
of  what you th ink  is  happening i s  a real measurement, I t h i n k   t h a t  
one  might lose s i g h t   t h a t  you were not  really  measuring  something. 
Let   us   say you t h i n k   t h e r e  i s  a tropopause a t  100   mi l l i ba r s  and you 
f o r c e   t h i s   i n t o  your so lu t ion  when you have  not got it i n  your 
v e r t i c a l   r e s o l u t i o n ,  you might come out   fee l ing   convinced   tha t  I 
have  found the  tropopause a t  100 m i l l i b a r s  when, i n   f a c t ,   t h a t  maybe 
it i s  not .   there .  And I th ink  you have t o   b e a r   i n  mind l i m i t a t i o n s  
t h a t   t h i s   r e a l l y  i s  no t   t he re  and you should  not  convey  the impres- 
s i o n   t o  someone else, say, who ac tua l ly   does   no t  know exac t ly  what 
you are doing ,   tha t  you are actually  determining  something  that  
r e a l l y  is not   there .  It i s  j u s t  a f e e l i n g  I have  about   this ,  I 
wouid l i k e  someone t o  make a comment about  whether  they  think  they 
are really  determining  something  that  is  t h e r e   o r   t h a t  maybe is  
l i k e l y   t o   b e   t h e r e   o r  what? 

Strand: With regard t o  t h e s e   v i r t u a l  measurements, you p u t  them 
in   wi th   the   cor rec t   express ion   of  how  much f a i t h  you have i n  them. 
I f  you p u t  them in   w i th   g ros s ly   i nco r rec t - - fo r   i n s t ance ,   t he re  is  
something tha t   dese rves  a large  covariance  matrix  and you p u t   i n  
a small one,  then you can  expect  trouble.   But  normally  on  these 
th ings  w e  p u t   i n   c o v a r i a n c e s   t h a t  are commensurate with  the  degree 
of  our knowledge  of  whatever w e  p u t   i n   f o r  a v i r t u a l  measurement. 
I am inc l ined  t o  agree   wi th  D r .  Rodgers t h a t   t h e s e  are e v e r y   b i t  
as v a l i d  as measurements made with some kind  of  machinery.  Just 
because some kind  of  machine  measures it does  not mean it i s  any 
more o r  less sacred  than  something  that  you p u t   i n  from  your sta- 
t i s t i c a l  knowledge. 

Rodgers: Well, I w a s  going to  s a y   t h a t  I agree   wi th  D r .  Susskind. 
It is  exac t ly   t he  sort o f . t h i n g  I meant when I s a i d  you have g o t  
to  make q u i t e   s u r e  any v i r t u a l  measurements you p u t   i n  are r i g h t .  
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Chahine : How? 

Rodgers: That is  en t i r e ly  up to  you. 

S t a e l i n :  L e t  m e  at tempt  to  format  the  question a l i t l e  d i f fe ren t ly .  
I would say  that  one  of the  biggest  unsolved  problems  in  the sta- 
t i s t ica l  approach, which I think is  the  proper  approach, i s  how 
b e s t   t o  select the  a p r i o r i  statistics. I f   t he  atmospheric  sta- 
tistics were stationary,   then it would be  an  easy matter. An 
appropriate set  of statistics would simply  involve a suf f ic ien t ly  
la rge  ensemble t o  make t h e   e r r o r s   a r b i t r a r i l y  small. The problem 
arises because the atmospheric statistics are  nonstationary  in 
space  and i n  time. The means and standard  deviations  are  both 
very  slowly  varying  functions. I t  seems incumbent on people who 
wish to  exploit   these  techniques  further  to  devise  procedures  other 
than  the ad hoc ones t h a t  w e  are  presently  using. For  example, 
fo r   t he  microwave data ,  w e  now simply  pick  an a p r i o r i  ensemble 
t h a t  is  overly  large. We use  the  entire  globe. We would prefer  
t o   t ake  small regions  but w e  once erred by overspecializing  the 
statistics. We broke  the  globe  into  seven  climatic  regions and 
different  seasons.  Although w e  incorporated enough years   to   ge t  
adequate  data, even then  the statistics were too  narrow;  they were 
overaonstrained and introduced  toomuch  noise. Now somewhere 
between those two extremes--being overly  general   or   too  res t r ic t ive--  
there  must be some  optimum region of operat ion,   I f  one could  close 
the   de f in i t i on  of  the problem,  one  ought t o  be a b l e   t o   a r r i v e   i n  
pr inc ip le  a t  what i s  more nearly  an optimum solution. 

King: I think w e  must be careful  not  to  subvert  the  language. I 
think it i s  inco r rec t   t o  speak  of  using v i r t u a l  measurements as 
putting  information  into  the  inversion. I think  that  one should 
say  instead tha t  v i r t u a l  measurements put   constraint   in to   the 
inversion. The only  information you have is  the  radiances. 

Chahine: What I want to  say i s  t h e  fol lowing:   vir tual   data   are  
not and  cannot be a subst i tute   €or   real   physical  measurements. 
We have t o  do  our  best   to  get   the most accurate measurements f o r  
the  best  information  content  to  solve.  the problem. I f   the   da ta  
are  incomplete,then w e  have t o  do something t o  improve the solution. 
But first w e  have t o  look for   the best avai lable  measurements, 
best   physics,  best real information. 

Twomey: I would l i k e   t o  make a point.  The d is t inc t ion  i s  not 
always as c l ea r  as some of t h e  statements  just  made might make it 
appear. I think  the  tropopause is  a good example. We have prob- 
lems, obviously,  getting by any straightforward  inversion  tech- 
nique; w e  have trouble  getting  the  tropopause  because w e  have t o  
pu t   i n  a smoothing operation somewhere. Nevertheless, w e  know 
almost  always or   very   o f ten   tha t   there  i s  a tropopause there, In 
pr inciple ,  one could  say l e t  us  solve  the whole sequence  of 
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inversion problems i n  which w e  de f ine   t he   he igh t  and  temperature 
of the  tropopause  and  then get t h e   b e s t   s o l u t i o n  we can, some con- 
s t ra ined   so lu t ion .   This  would take  a long t i m e .  I a m  j u s t  
p o i n t i n g   o u t   t h a t  it is  possible i n   p r i n c i p l e .  Now whether t h i s  
procedure is reasonable or not  depends on t h e  error of   the  measure- 
ments  and how small w e  can make our   res iduals   for   each  combinat ion.  
I n   o t h e r  words w e  would have t o  do a search  through a l l  poss ib le  
tropopause l e v e l s  and   tempera tures ,   bu t   th i s  would  remove the  con- 
f l i c t  between t h e  smoothing cons t r a in t ,  which w e  r e q u i r e   f o r  sta- 
b i l i t y ,  and the  existence  of  the  tropopause.  

van de H u l s t :  I came t o  t h i s  meeting  with a very  f i rm  prejudice 
and the   p re jud ice  is  that  instead  of  inversion  one  should  always 
do  modeling. The reason why I thought so is t h a t   t h e   i n v e r s i o n  
problem is similar t o  buying a s u i t .  You go t o  a store and, a t  
least i n  Europe,  they  sometimes  have d i f f e r e n t   f l o o r s .  On one 
f l o o r  is  a tailor.  H e  takes   about  40 d i f f e r e n t  measurements. 
From those  measurements  f inally after a week o r  t w o ,  he comes up 
with a s u i t   t h a t   d o e s   n o t   q u i t e   f i t .  And so he  takes   another  
couple  of  measurements  and  then  finally it f i t s   p e r f e c t l y ;  it is  
also expensive. The a l t e r n a t i v e  is t h a t  you address  someone on 
t h e   o t h e r   f l o o r  and  say: my s i z e  is  54,  and they  look a t  your  belly 
t o  see i f  it is  e x t r a  big or not  and those two parameters together  
more or less def ine  where  on the   rack  you w i l l  f i n d  something  which 
s u i t s  you. Now, i f ,   i n   f a c t ,  you t r y   t o   p u r s u e   t h i s   a n a l o g y ,   i n  
which both  the number of  parameters  and  the cost i s  somewhat repre- 
sen ta t ive ,   then  you f ind   tha t   the   t rade-of f  is  not  as simple as 
you might  think.  Both  methods are was te fu l .   I f  you go along  the 
rack,  which  has  been  called a ca t a log   o r  a l i b r a r y   i n   t h e s e   d i f -  
f e r e n t   t a l k s ,   t h e n   t h e r e  i s  waste because  extra material is  used 
t o  manufacture also s u i t s   t h a t  nobody w i l l  eventua l ly  buy. The 
o ther  method is wasteful  because you take  a c e r t a i n  number of 
measurements  which are redundant .   Final ly ,   the   customer  or ientat ion,  
i .e . ,  the  needs  of  the  public  and  the  responsible  bodies  in  govern- 
ment who have t o   p u t  up t h e  money w i l l  determine  where  the  actual 
trade-off is. I t h i n k   i n   t h a t   r e s p e c t   t h i s   p a r t i c u l a r   m e e t i n g   h a s  
been q u i t e   h e l p f u l   i n   h e l p i n g  a l l  of u s   t o   g e t  a f e e l  of  where t h e  
optimum poin t   in   th i s   t rade-of f   might   be .  
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